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1. Introduction

The most basic property of a mechanism is its mobility, that is, its number
of degrees of freedom (DOFs). One may also speak of the mobility of a family of
mechanisms: for example, one may say that planar four-bar linkages have mobil-
ity one. Such statements are properly understood to mean that almost all of the
mechanisms in the family have the stated mobility, although there may be ex-
ceptions. A classical example is the family of 4R spatial single-loop mechanisms.
Four general R-R links cannot even be assembled into a closed loop, yet planar,
spherical, and Bennett four-bars all assemble with mobility one. (Delassus [7]
showed that there are no other moveable four-bars.) Another notable example
is the family of Stewart-Gough parallel-link (6SPU) robots, which when the leg
lengths are held fixed may be considered as 65U mechanisms. Most 65U mech-
anisms are structures, that is, they have mobility zero. They can be assembled
in a finite number of configurations (at most 40) and are immobile in each of
these. Nevertheless, exceptional cases exist of 6SU mechanisms that have mo-
bility one, specifically the architecturally singular Stewart-Gough platforms as
classified by Karger [13] and a moveable platform found by Geiss and Schreyer
[8] that is not architecturally singular. The mobilities of many families of mech-
anisms, particularly those described by just a list of the number of links and the
kind of joints between them, submit to simple formulas, such as the Griibler-
Kutzbach formulas. In contrast, those families whose description includes extra
geometric constraints, such as parallel or perpendicular joint axes or particular
combinations of link lengths, often require a more detailed analysis.

The situation is even more complicated than just indicated, for some mech-
anisms have assembly modes of different mobility. The existence of such mech-
anisms forces one to speak of the mobility of each assembly mode rather than
the mobility of the mechanism. It may even happen that two assembly modes of
different mobility happen to meet, in which case the mobility of the mechanism
can change at a point of intersection. Mechanisms with this property are said
to be kinematotropic [24].

Kinematicians also speak of “finite mobility” and “infinitesimal mobility.”
An infinitesimal degree of freedom corresponds to a direction of motion that
exists to first or higher differential order but does not extend to a finite motion.
As we shall discuss, these degrees of freedom are intimately connected to the
concept of roots that have multiplicity greater than one. All degrees of freedom,
finite and infinitesimal, lie in the null-space of the Jacobian matrix for the
loop equations. This article describes an extension of the Jacobian matrix,
called a Macaulay matrix, which includes higher order terms that can be used
to distinguish between finite and infinitesimal directions, thus arriving at the
finite mobility of the mechanism. The methodology involved comes from work
in numerical algebraic geometry, where the Macaulay matrix is central to a
local dimension test that is used to sort solution points found by numerical
continuation[1].

In short, the contribution of this article is to show how the local dimension
test from numerical algebraic geometry applies to determining the mobility of



an assembly mode of a mechanism. We describe an algorithm whose inputs are:
(1) a mechanism as defined by its loop equations, (2) an assembly configuration
of the mechanism, and (3) an upper limit on the order of the analysis. The
output is a determination of the local mobility up to the given order. We show
how the method can often be applied to a whole mechanism family. Care is
taken to clarify the mathematical meaning of the computed results.

The paper begins with a short review of mobility analysis as currently con-
ducted in the kinematics community. We then review Macaulay matrices and
the local dimension test based on them. This leads to a new approach to com-
puting mobility, which we illustrate on several examples.

2. Mobility Analysis

To place the current work in context, we begin with a brief review of existing
methods for determining the mobility of mechanisms and mechanism families.
A more detailed review of the field is available in [9].

The idea underlying formulas for calculating mobility is basically a count of
the number of variables and the number of constraint equations, the latter being
the loop closure equations for a mechanism. The difference between these is a
first guess at the mobility of the mechanism, as each (scalar) loop equation has
the potential to reduce the mobility by one. However, this guess is only correct
if each of the equations places an independent constraint on the motion. The
question of independence is thus at the heart of the matter.

The need for a more refined approach than counting variables and equations
is immediately apparent in the kinematics context. Consider a rigid body in
three-space. Its location is described by a position and orientation, say (p, R) €
SE(3) = R3 x SO(3). Here, SO(3) is the set of 3 x 3 rotation matrices given by

SO(3)={ReR*>*RTR=1, |R| =1} (1)

It is well-known that dim SO(3) = 3, but this is not immediately apparent from
a count of variables and equations, as detailed next.

Example 2.1 (SO(3)). Matriz R in Eq. 1 has nine entries. Due to symmetry,
the matriz equation RTR = I is equivalent to just siz scalar equations, so with
the final equation |R| = 1, there are a total of seven. If the seven equations
were independent, one would have that SO(3) is two dimensional (9 —7 = 2),
whereas it is known to be three dimensional. The first siz equations determine
two sets of dimension three, the set of rotations having |R| = 1 and the set
of mirror-image rotations having |R| = —1. Thus the final equation, |R| = 1,
does not reduce the dimension of the set; instead, it picks out the rotations and
discards their mirror images.

The simplest mobility formulas, which we refer to as Griibler-Kutzbach for-
mulas [10, 14], account for the dimension of the ambient motion space of the
links. A free-floating rigid body in three-space has six degrees of freedom, the



Type

rotational, R; prismatic, P; helical/screw, H
cylindrical, C

spherical, S; planar, E

w N Y

Table 1: Degrees of freedom of the lower-order pairs

dimension of SE(3). Thus, D = 6 is the ambient dimension for spatial mecha-
nisms. But for planar or spherical mechanisms, the ambient dimension is D = 3
being the dimension of R? x SO(2) and SO(3), respectively. Declaring one
link as a fixed ground link, we have that a mechanism built with N links has
D(N — 1) degrees of freedom before connecting the links with joints. Suppose
that a two-link mechanism with a single joint of a certain type (e.g., revolute
or prismatic) has F degrees of freedom. This implies that the joint removes
C = D — F degrees of freedom, and C is called the degree of constraint of the
joint. The Griibler-Kutzbach formulas assume that such a joint always removes
C freedoms no matter where it is placed in a multi-link mechanism so that the
resulting mobility is:

DOF =D(N —-1) — ZCj = ij - DL, (spatial case) (2)
jeJ jed

where J is the set of joints, C; is the number of constraints imposed by joint j,
F; is the number of freedoms allowed by joint j, and £ is the number of loop
closures. Variants of the formulas derive from topological relations between the
number links, joints, and loops. The degrees of freedom of the basic “lower-order
pair” joints and their kinematic symbols are given in Table 1.

It is believed that these formulas are correct for any general mechanism in
a family described only by a list of links and their joints. That is, other than
the conditions defining the ambient motion space (e.g., spherical mechanisms
have only rotational joints that intersect at the origin), the parameters of the
links have no other special relations. The correctness of the Griibler-Kutzbach
formulas in this generic sense has never been rigorously proven, although some
work in that direction may be found in [17].

Just as the spatial Griibler-Kutzbach formulas must be modified for the
planar and spherical cases, more extensive modifications are needed for mech-
anisms that mix planar, spherical, and spatial sub-mechanisms. Displacement
group methods [12] deal with these and related subgroups of SFE(3), such as
the Schonflies subgroup R3 x SO(2). Roughly speaking, by analyzing what
subgroups are generated by the branches of a tree-like mechanism and then
using knowledge of how these subgroups intersect when the branches join to
form a closed-loop mechanism, the analyst may derive the mobility of many
complicated mechanisms. The approach can often account for joints that are
successively parallel, perpendicular, or intersecting.

Still, the displacement group approach does not account for extra degrees
of freedom that arise due to special values of the link parameters. Hervé [12]



classifies mechanisms into three categories: “trivial,” for which the Griibler-
Kutzbach formulae suffice; “exceptional,” which are not trivial but whose mo-
bility is captured by displacement group theory; and “paradoxical,” in which
more complicated relationships in the link lengths, twists, and offsets affect the
mobility. The classic example of a paradoxical mechanism is the Bennett spa-
tial four-bar [4], which has mobility one due to a special relation between link
lengths and link twists (with all link offsets equal to zero). Also in this class are
the architecturally singular Stewart-Gough platforms previously mentioned.

A different approach to generalizing the Griibler-Kutzbach formulas depends
on a technique of replacing links and joints with an equivalent polyhedral model
[23]. This approach overlaps with the group theory approach in the ability to
deal with some exceptional mechanisms. It has also been used to successfully
explain the mobility of certain special mechanisms that contain scissor linkage
sub-mechanisms.

Yet another approach, closely related to the current contribution, is to com-
pute mobility as the corank of the Jacobian matrix evaluated at an assembly
configuration of the mechanism [18, 19, 26]. Since these approaches directly
use the differentials of the loop equations, they correctly predict the mobility
of many paradoxical mechanisms provided that one knows at least one general
assembly configuration. While this general approach is useful, it has limitations.
In this article, we elucidate these limitations and give a methodology that moves
beyond them.

All mechanisms built with lower-order pair joints of type P, R, C, E, or
S, that is, excepting helical type H, are algebraic. That is to say that the
loop equations for the mechanism can be written as a system of polynomial
equations. Potentially, the equations can be solved using symbolic methods
from computer algebra, while numerical algebraic geometry [20, 21], which is
based on continuation methods, is able to solve larger systems. The strength of
this approach is that it is fully automatic and does not require foreknowledge
of an assembly configuration. The downside is that the process of finding all
solution components can be expensive, although the speed of the algorithms
involved has improved remarkably in recent years [11]. These methods compute
other characteristics of the motion, such as its degree, that may not be of interest
in early studies, so it may be valuable to have a less expensive approach that
computes the minimal information required to determine mobility. In fact, the
latest algorithms in numerical algebraic geometry use a local dimension test,
described in more detail below, to sort the solution points found by continuation.
In this paper, we assume we start with a mechanism in a known assembly
configuration, in which case a slight variant of the local dimension test can be
employed to obtain information about the mobility of the associated assembly
mode.

The local dimension test is based on the partial derivatives of the loop equa-
tions at the given assembly configuration. As such, it is a purely local analysis
and does not depend on the global properties of polynomial systems (finite de-
gree, in particular). The approach only requires that the loop equations be
complex analytic, a condition that is satisfied by helical joints (type H) as well



as all the algebraic joints (P, R, C, E, S).
The full situation is best explained by a pathway that temporarily leads us
outside of kinematics into the realm of general analytic geometry.

3. Dimension and Local Dimension

To discuss mobility in kinematics, it is helpful to adopt concepts from com-
plex analytic geometry. More detail on the ideas outlined here can be found in
[21, § A.1].

The class of functions of interest to us is the class of analytic functions, also
known as holomorphic functions, the functions which in any sufficiently small
open neighborhood of a point p in the domain of definition can be expressed
as an absolutely convergent power series with complex coefficients centered at
the point p. These functions include all polynomials as well as the elementary
trigonometric and exponential functions. This covers all the kinds of functions
one finds in kinematic loop closure equations.

A complex analytic set is the zero set of n analytic functions in N unknowns,
f(z), f: CN — C". In kinematics, we generally are only interested in the real
solution set

Ve(f) = {z € RY|f(2) = 0},

but since the reals are contained within the complexes, it is helpful to first
consider the complex solution set

Ve(f) = {z € CY|f(x) = 0}.
We sometimes write real(Z) to denote the real points in Z. Clearly,

real (Ve(f)) = Va(f) = real (Ve(f)) -

The algebraic completeness of the complex field makes some calculations easier,
so we consider first the dimension of V¢ (f) and then consider its real part. We
elaborate on the relationship between real and complex dimension in § 4.

Informally, the dimension of an analytic set is the minimum number of coor-
dinates needed to generically specify points on the set uniquely and continuously.
A more rigorous definition of dimension uses the concept of biholomorphic map-
pings. A holomorphic mapping, say ¢ : X — Y, from complex analytic set X to
complex analytic set Y is a mapping given by analytic functions. The mapping
is called biholomorphic if it has a holomorphic inverse, that is, a holomorphic
mapping ¢ : Y — X such that ¢)(¢(z)) = z for all 2 in an open subset of X and
¢(¢(y)) = y for all y in an open subset of Y. If there exists a biholomorphic
mapping from X to Y, then we say that X is biholomorphic to Y. We skip
some of the technical details here, but all we need is for the biholomorphism to
hold on a local neighborhood of a point.

Let Z C CV be an analytic set and let z € Z be a point. If a neighborhood
of Z that contains z is biholomorphic to a neighborhood of a point in CF,
then we say that Z is smooth at z and the local dimension of Z at z is k,



written dim, Z = k. The idea is that the coordinate axes in C* provide a local
coordinate patch for Z in the neighborhood of z. As one would expect, the
dimension of C* at any point is k, since C* is biholomorphic to itself under the
identity map. Notice that C* has real dimension 2k due to the fact that each
complex coordinate direction has a real and an imaginary part. Assigning the
complex dimension k to C* has the agreeable property that the dimension of
the set of real points in C¥, which is just R¥, is also a k dimensional set. Thus,
for Euclidean sets, the real and complex dimensions are the same. This is not
the case for all the sets of interest, as explained further in § 4.

The smooth points of a complex analytic set Z are denoted Z,.; (they are
also known as regular points), and their complement in Z is called the singular
set of Z, written Zgng = Z \ Zyeg. The definition of local dimension just given
only applies at smooth points. Fortunately, it can be shown that the set Z,qs is
open and dense in Z, so any singular point has neighbors that are smooth. So,
we may define the local dimension of Z at a singular point z as the maximum
of the local dimension of its smooth neighbors in Z.

Example 3.1. Suppose f(x,y,2) = {xz,yz}, so Z = Ve(f) = Z1 U Zy where
Zy is the line Ve(z,y) and Zy is the plane Ve(z). Away from the origin, a
biholomorphism between a local neighborhood of Z1 and a local neighborhood of
C is given by the pair

o1 (x,y,2) — (2), P1(t) : (2) — (0,0, 2).
For Zs, away from the origin, we have biholomorphic maps

P2 : ($7y72) = (z,9), Py (:L‘,y) = (:137y,0).

Neither of these pairs of maps covers all the points in the neighborhood of the
origin, (0,0,0), where the two components Z1 and Zs meet. The origin is sin-
gular while all other points of Z are smooth. The local dimension at two of the
smooth points is: dim 1) Z = 1 and dim(y 1 0y Z = 2. The origin has neigh-
bors in Zy and in Zs, so the local dimension at the origin is the greater of these
two: dimg,0,0y Z = 2. Figure 1 illustrates a related example, where Z consists
of a surface and a curve, each nonlinear.

In Example 3.1, it is easy to write down maps that establish the local di-
mension at smooth points, but in general, this is not so simple. However, there
is one frequently occurring situation where local dimension is easy to establish,
as stated in the following well-known proposition. For a system of m analytic
functions in N variables, f(z1,...,2n) = {f1,--, fm} : CN¥ — C™, we denote
the m x N Jacobian matrix of f as df, having elements df;; = 0f;/Ox;. The
dimension of the right null space of df is called the corank of df:

corank(df) = N — rank(df).



Figure 1: A set Z with local dimensions: dimy Z = 1, dimp Z = dim¢ Z = 2.

Proposition 3.1. Suppose Z C CN is given by m < N functions, f : CN —
C™, Z=Vc(f) =Ve(fr,---, fm), and suppose that the Jacobian matriz of f is
full rank at z € Z, i.e., rank(df (z)) = m. Then, dim, Z = N —m = corank(df).

Proof. If necessary, re-order the variables such that the trailing m x m
block of df is full rank, say df = [J1 J2], Jo € C™*™ rank(Jy) = m. Sub-
divide the variables in a compatible way: = = (u,v), u = (21,...,ZN-m),
v = (TN_m4i1,---,2N). Then, the map ¢ : Z — CN~™ given by (u,v) — (u)
has an inverse 1 in the neighborhood of z = (ug, vo) that is approximated to first
order as (u) — (umo — Iy i (u— uo)). While this is just an approximation,
the implicit function theorem says that an exact holomorphic inverse exists on
an open neighborhood of ¢(z). O

Local dimension is defined in terms of the existence of biholomorphic maps,
but does not give a prescription for constructing such maps. The difficulties
arise when the conditions of Proposition 3.1 are not satisfied; that is, when the
Jacobian matrix of the functions defining an analytic set is not full rank. The
following two examples illustrate that when the count of excess variables, N —m,
is not equal to the Jacobian corank, corank(df), neither can be trusted to give
the proper dimension.

Example 3.2 (SO(3) continued.). In Example 2.1, we saw that SO(3) is
given by m =7 equations in N = 9 variables. The Jacobian of the equations at
any point of SO(3) has only rank 6, so corank(df) = 3. In this case,

2= N —m < corank(df) = 3 = dim SO(3)

Example 3.3. Let f(x,y) = 22, so that Z = Ve(f) = {(z,y) € C?|(z,y) =
(0,t),t € C}. In other words, Z is the y-axis in the (x,y)-plane. Clearly, Z is
one-dimensional, but the Jacobian at any point on Z is [0 0]:

dimZ =1= N —m < corank(df) = 2.

Although neither measure necessarily gives the correct local dimension, they
do give bounds on it. As usual, let Z = Ve (f) = Ve(fi,..., fm), f: CN — C™.



As in [21, § 13.4], we define rankf as the rank of its Jacobian at a generic point
z* € CV, that is, rankf := rank df (z*). Then, we have

N —m < N —rankf < dim, Z < corank df (z). (3)

Example 3.1 illustrates that an analytic set may break up into sets with
different properties, in that case, a one-dimensional line and a two-dimensional
plane. This kind of break-up also applies locally in the neighborhood of a point
on an analytic set. More precisely, if one removes the singular points of a
complex analytic set, the remaining smooth points break up into connected ir-
reducible components. The irreducible components meet only at singularities.
The local and global irreducible break-ups do not necessarily agree. For exam-
ple, an irreducible curve may cross itself (think of a curve with a section in the
shape of the Greek letter «). At the point of crossing, the local irreducible de-
composition has two pieces, local segments of the curve, while the whole curve
is a single piece in the global irreducible decomposition.

An important distinction is to be drawn between reduced and nonreduced
components. Suppose that z* € Z., is a smooth point of Z. If dim,- Z =
corank df (z*), then we say that z* is on a reduced component of Z. Conversely,
any component whose dimension is less than the corank of the Jacobian at its
smooth points is called a nonreduced component. Example 3.3 gives an example
of a nonreduced component: V¢ (22?) and Ve(x) define the same set of points,
but only Ve(x) is reduced. As we shall see, the dimensionality of nonreduced
components can be computed by evaluating higher order derivatives of f.

4. Complex Dimension and Real Dimension

Up to this point, we have not distinguished between real and complex di-
mension. While in many cases these are the same, they may differ. A few
examples will help set ideas. First, consider a complex line in C?, say for ex-
ample, Ve(x — y). This can be parameterized as (z,y) = (¢,t), t € C, and
hence has complex dimension one. This is equivalent to (z,y) = (a + bi, a + bi),
a,b € R, where i = /=1, so we may say that over the complexes V¢ (z — ¥)
is two real dimensional. However, the real points of this set are just Vg(x —
y) = {(z,y) = (a,a),a € R}, a one dimensional set. Thus, we may write
dimVg(z — y) = dimVe(x — y) = 1, where it is understood that the dimen-
sions being equated are the real dimensionality of the real set and the complex
dimensionality of the complex set, respectively.

Consider more generally any system of linear equations with real coefficients,
say Ar —b =0, A€ R™" ¢ € C" b e R™. The solution set of the linear
system can be written as x, +x, where x,, is a particular solution and xj, is any
vector in the null space of A, xp, € {v € R"|Av = 0}. Since A is real, the null
space of A is given by a set of real basis vectors. For example, the particular
solution and the basis vectors may be computed by Gaussian row reduction, and
since A and b are real, all the computed quantities remain real throughout the



computation. By this reasoning, we see that the real and complex dimensions
of any linear space given by real equations must be the same.

The local dimension at a smooth point of a reduced component is by defini-
tion equal to the corank of the Jacobian at the point. If the system of functions,
f, that define the component are such that the Jacobian matrix is real at any
real point then the real and complex local dimensions at a real smooth point
must be equal: dim, Ve(f) = dim, Vr(f), z real, smooth. For example, this will
be true for any smooth point on a reduced component of a polynomial with all
real coefficients.

The equality of the real and complex dimensions of a complex analytic com-
ponent can fail for several reasons. One case is when there are no real points
in the complex set. This occurs, for example, in the case of 22 + y2 + 1 = 0,
which describes a complex circle that has no real points (for real (z,vy), 2 + y?
can never be negative). This case is irrelevant to the remainder of this paper,
because we assume we are given a point on the real set, hence it cannot be
empty.

The equality of the real and complex dimensions may also fail at a singular
point.

Example 4.1. A simple example is % +y? = 0, which describes a one complex
dimensional set, namely the pair of lines Ve(x + iy) and Ve(x — iy), whereas
the real solution set is a single point, Vr(z? + y*) = (0,0). Notice that the real
point occurs where the two complex lines intersect.

Example 4.2. A more interesting example is the set Z = V¢ (y? — 22 (z — 1)),
which is a single irreducible compler curve: dimZ = 1. In contrast, the real
points of Z consist of a curve y = +/x?(x — 1), x > 1, and the isolated real
point (0,0).

These two examples are related, as near the origin y? — 2%(r — 1) ~ 22 +3%. In
Example 4.2, the origin is a point where the complex cubic curve crosses itself.

While singularity is necessary for the complex and real local dimension at a
real point to differ, it is not sufficient. The origin is a singular point of 22 — /2,
which lies at the crossing of two lines V(z — y) and V(z 4 y). In this case, the
real and complex local dimensions at the origin are both equal to 1.

In higher dimensions, the set of real points of a complex analytic set of
dimension k can be empty or it can have any dimension less than or equal to
k. For example, 2 + y? + 22 = 0 defines a surface in C3 that contains only
an isolated real point, the origin. A complex surface that contains only a real
curve is defined by (22 4+ y? — 1)? + 22 = 0. (The real curve is a unit circle in
the z = 0 plane.)

The situation can be summarized as follows:

1. The dimension of the set of real points in a complex analytic set is less
than or equal to the complex dimension of the set. This also applies to
local dimension. That is, for any algebraic set Z C CV, and for any real
point z € Z,

dim real(Z) < dim Z, and dim, real(Z) < dim, Z.

10



2. If z is a regular point of Z, then dim, real(Z) = dim, Z.

5. Multiplicity and Local Dimension

The local dimension of an analytic set is closely tied to the concept of mul-
tiplicity. Consider the equations in one variable z(z — 1) = 0 and z2(x — 1) = 0.
For either equation, the solution set is just two points, the origin and x = 1,
that is, Ve (z(x —1)) = Ve(2?(x —1)) = {0, 1}, but the character of the solutions
differ. Both have x = 1 as a simple root, but x = 0 appears as a simple root
of x(x — 1) = 0 and appears as a double root of 2?(x — 1), that is, it has mul-
tiplicity one and two in the two cases, respectively. Multiple roots tend to be
more sensitive to perturbations than simple roots or, said another way, allowing
some small variability away from an exact equality, the multiple root has more
leeway to move than the simple one. In our example, for small real positive e,
the inequality |z(z — 1)| < € admits all real  near zero in the range of approxi-
mately [—e, €] while for |2?(z — 1)| < € this expands to approximately the range
[—+V/€,/€]. This is a real effect that is observed in mechanical systems: mech-
anisms in a configuration associated with a multiple root tend to be “loose,”
admitting small motions in the neighborhood of the root. As mentioned earlier,
these motions are often referred to as infinitesimal degrees of freedom. A more
concrete example is a three-bar planar RRR linkage (a geometric triangle) with
the sum of the two shorter link lengths equal to the third link length. Due to
link elasticity and joint clearances, such a degenerate triangle will allow small
deflections.

As the order of a multiple root increases, so does its sensitivity; e.g., 23 =
0 is more sensitive to perturbation than z?> = 0, etc. The functions z, z2,
and 2% have zero, one, and two derivatives, resp., that vanish at the origin.
The identically zero function f(z) := 0, which admits all € C as a one-
dimensional solution set, may be thought of as having a root at the origin of
infinite multiplicity: all the derivatives d¥f/dz*, k = 1,2,..., 00, vanish at the
origin. This rough idea can be made into a precise mathematical theory that
relates the number of vanishing derivatives to multiplicity and dimension.

The relation between vanishing derivatives, multiplicity, and dimension is
easiest to understand through a construction we call a Macaulay matrix [16],
recently reintroduced in a modern computational context by Dayton and Zeng
[6]. This matrix organizes the analysis of higher derivatives. The following
multidegree notation is useful. For a = (o, ..., an) € ZY,, i.e., a vector of N
nonnegative integers, and x = (xq,...,2y), let a

—
=~
N

la| i =01+ + an,

al :=oq! - an!, (5)
% =2}, (6)
1 olelf
Déf = —— — -
! al 9zt - 0z} (™)

11



With these notations, the d-th order Macaulay matrix for a system of functions
f(x) = (fi(x),..., fm(x)) has columns indexed by « and rows indexed by (3, j)
with elements

Ma(z) = (D*(2"f))) (2), (8)
where « ranges over all possibilities with || < d, § ranges over all |§] <
max(0,d — 1), and 1 < j < m. Notice that the derivatives, D%, have been
defined such that if f is a polynomial, then (D*(f))(0) is the coefficient of the
monomial z®. This observation makes it easy to write down examples like the
following one.

Example 5.1. For f = {y—x2, 23}, the third-order Macaulay matriz evaluated
at (0,0) is

0,00 (1,00 (01 (20 (1,1) (0,2) (3,0 (21) (1,2) (0.3)
Al 0o 0 1 [ -1 0 0 0 0 0 0
fa| O 0 0 0 0 0 1 0 0 0
zfi | 0 0 0 0 1 0 | -1 0 0 0
yfi | 0 0 0 0 0 1 0 -1 0 0
zfs | 0 0 0 0 0 0 0 0 0 0
M3(0) = yfa | 0 0 0 0 0 0 0 0 0 0
22f [0 0 0 0 0 0 0 1 0 0
zyfi | 0 0 0 0 0 0 0 0 1 0
v i 0 0 0 0 0 0 0 0 0 1
22fa| 0 0 0 0 0 0 0 0 0 0
zyfa| O 0 0 0 0 0 0 0 0 0
v2fal O 0 0 0 0 0 0 0 0 0

(9)
The lines in the matriz show how My(0), M1(0), and M2(0) appear as subma-
trices of M3(0).

In some presentations of the Macaulay matrix, e.g., [6], the elements are defined
as

Ma(z) = (D*((z = 2)° f)) (2)-
This is interchangeable with the definition above, since we will only be concerned
with the column space of the matrix, and it can be seen that the matrices for
the two definitions differ only by premultiplication by a nonsingular matrix.
For a point z € CV, let cq(2) be the column corank of Mgy(2), that is,

calz) = (d ZN ) ~ rank My(), (10)
where the binomial coefficient is the number of columns of My(z). In Exam-
ple 5.1, this gives ¢o(0) = 1, ¢1(0) = 2, ¢2(0) = ¢3(0) = 3. (The sequence c¢4(z)
determines a Hilbert function, H(d) = cq(z) — ca—1(%), a concept often used in
algebraic geometry, but we find ¢4(z) more useful here.)

The growth rate of the sequence of coranks, c4(z), d = 0,1,2,..., reveals
the local dimension at z. If z is an isolated solution (i.e., dimension = 0), then
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the coranks reveal its multiplicity. Note that c4(z) is at most (d"zN ), which is a

polynomial of degree N in d. The facts stated in the following proposition are
well known; see [6][5, § 9.3] for discussions of the algebraic case.

Proposition 5.1. For any z € Ve (f),

1. The coranks cq(z) monotonically increase with increasing d.

2. If, and only if, the local dimension at z is k, i.e., dim, Vc(f) = k, the
asymptotic growth rate of cq(2) as a function of d is O(d¥).

3. If for some d, cj(2) = g 1(2), then ca(z) = c4(z) for all d > d and z is
an isolated point in Ve(f).

In the case that item 3 applies, let d* be the minimum value of d such that
ci(z) = cqp1(z). We say that cq(z) stabilizes at d*. Moreover, we call d* the
depth and u(z, f) = cq+(2) the multiplicity of z as a solution of f. It is easy to
see that this notion of multiplicity agrees with the usual multiplicity of a root
of a function in one variable.

Example 5.2. Consider Ezample 5.1. The sequence for cq(0) is 1,2,3,3,...
Accordingly, the origin is isolated with multiplicity 3 and depth 2.

6. Local Dimension Testing

A test for local dimension could be based on Proposition 5.1, item 2 by
computing the sequence c4(z), d = 0,1,2,... and analyzing its growth rate.
However, this tends to be prohibitively costly because the size of the Macaulay
matrices grows quickly and one must carry out the computation far enough in d
so that the asymptotic rate dominates. This is especially problematic consider-
ing that there is no termination condition to signal when d is large enough. Large
matrix rank tests become doubly expensive because higher precision arithmetic
is needed to overcome numerical conditioning troubles.

It is useful to consider the effect of appending extra random linear equations
to the original ones. For a complex analytic system f : CV — C™, we wish to
consider the sliced system

S(f, k)= (f(z), A(z — 2)), A € CP*N | A generic.

A more manageable local dimension test, presented in [1] follows from Propo-
sition 5.1, item 3 and the following observation.

Proposition 6.1. Let Z = V¢ (f) € CV, for complex analytic system f : CN —
C™. Let z € Z be a point in Z. For generic A € CF*N | the complex analytic
set Z' = Ve (f(x), A(x — 2)) has local dimension

dim, Z' = max(0,dim, Z — k).
or more tersely stated

dim, Ve (S(f, k)) = max(0, dim, Ve (f) — k). (11)
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By “generic,” we mean that although there may exist a proper complex analytic
subset of CF*N where the relation fails, A avoids it. This will be true with
probability 1 if A is chosen at random.

In § 5, we defined the multiplicity of an isolated point. We may define the
multiplicity of a point z on a positive dimensional set Z = V¢(f) as

w(z, f) = p(z,8(f,dim, 2)).

That is, we append just enough linear equations through z to slice Z down to
a point and define multiplicity in terms of the multiplicity of the newly isolated
point. If we add even more slices, then it is clear that the coranks of the
Macaulay matrices can only decrease, so we have

u(z,S(f,k;)):u(z,f), k <dim, Z,
n(zS(f,k) < plz f),  k>dim, Z

To simplify notation, we will write ¢ 4(2) to be cq(z) for S(f, k). Combining
Proposition 5.1, item 3, with Proposition 6.1, we see that ¢ 4(2) stabilizes if, and
only if, dim, Z < k. Consequently, dim, Z is equal to the smallest k for which
the sequence ¢y, 4(#) stabilizes. As long as k > dim, Z, we have a termination
condition, namely ¢k q(2) = ¢k a+1(2), which limits the computational cost of
the test for large k. However, we do not know the correct dimension until we
observe that ¢ 4(2) stabilizes for some k but not for k — 1, in which case we

know that dim, Z = k.

We have the problem of establishing a stopping criterion for deciding that
the sequence ¢y, 4(z) for k = dim, Z—1 does not stabilize. In [1], this is provided
by foreknowledge of a bound, say fi, on the multiplicity of z. As soon as the
sequence exceeds [i, stabilization cannot occur and computation can stop. In
the context of numerical continuation algorithms considered in [1], the system
f(z) is polynomial, and the multiplicity bound is a count of the number of paths
that approach z in a polynomial homotopy.

In the applications we treat here, we do not assume that we have a multi-
plicity bound; we only assume that an assembly configuration of a mechanism
has been given. In this case, our conclusions must be weaker. To guarantee that
our procedure terminates, we instead provide an artificial limit for the depth.
That is, we ask the algorithm to investigate the local dimension “up to depth
d.” For a given k, if ¢.d1(2) <¢ 4(2), we may conclude only that

either dim, Z > k, or pu(z, f) > ¢; 4(2). (12)
Conversely, when the sequence does stabilize before (i, we know definitively that
dim, Z < k. (13)

We define the d-bounded local dimension, written dimz’ 44, to be the smallest
k that gives a stabilized ¢, 4(z) with depth less than d. We have the following
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relations:

lim dim, ; Z = dim, Z, (14)
d—oo ’
dim, Z < dim_ 4, , Z <dim_;Z (15)

The 1-bounded local dimension, dim, ; Z, is the corank of the Jacobian matrix,
which as noted earlier was used for mobility analysis in [18, 19, 26]. Relation 15
shows that this is an upper bound on the mobility; one may establish tighter
bounds by considering more derivatives to find the d-bounded local dimension
for d > 1.

Relations 3, 14, 15 are precise statements that may be applied to the idealized
mathematical model of a mechanism. Without extra information that limits the
possible multiplicity, this is all that can be concluded about local dimensionality
from knowing the ranks of the Macaulay matrices. In practice though, this may
tell all one needs to know, because there may not be a significant practical
difference between a true finite degree of freedom and an infinitesimal one of
high multiplicity. A real mechanism, having link elasticity and non-ideal joints,
will display a sensible freedom to move in either case. Thus, testing z up to a
high enough depth d for all possible dimensions provides good evidence about
the actual degrees of freedom.

7. Mechanism Families

To this point, we have only considered a single mechanism whose loop equa-
tions are written as a system of n analytic equations in N variables, say f(z) = 0,
f:CN — C". A family of mechanisms is parameterized by its link parame-
ters, say ¢ € @ C C™, where @ is an algebraic set given by polynomial system
g(q) = 0, so that the loop equations become f(x,q) =0, f : CV xC™ — C". For
example, g(q) = 0 might describe the Bennett conditions on the D-H parameters
of a 4R linkage, in which case, @) describes the set of all Bennett four-bars. We
assume that @ is irreducible, that is, it is all one connected set that cannot be
properly subdivided into a finite number of smaller algebraic subsets; otherwise
in the reducible case, we consider each irreducible component of @) to be its own
family. Each point in ) is a particular mechanism. The mobility of almost all
mechanisms in a family is equal and can be found by determining the mobility
of a randomly selected (generic) mechanism ¢* € @, that is, by analyzing the
solution set of f(z,¢*) = 0. This set may also factor into more than one irre-
ducible piece, and as we have seen in earlier examples, the dimensions of the
pieces are not necessarily all the same. The number of irreducible components
of each dimension is the same for generic points in @, while for some special
points lying on a proper analytic subset of (), some components may disappear
to infinity and some may increase in dimension (never decrease).

The degrees of freedom of a mechanism are the same as the dimension of
its solution set, and different irreducible components of the solution set cor-
respond to assembly modes of the mechanism. If we wish to apply the local
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dimension test to say something about the degrees of freedom of general mem-
bers of a mechanism family, then we need a general assembly configuration in
each assembly mode of interest. Short of applying numerical algebraic geometry
(continuation) or a symbolic decomposition method to find the irreducible de-
composition of the solution set, one might not be able to produce such general
assembly configurations. Nevertheless, it often happens that one does have an
example assembly configuration that parameterizes across a whole mechanism
family. We can then pick one of these randomly and perform a local dimension
test on it to learn something about the whole family. We illustrate this in § 9.1.

8. Implementation

The software package Bertini [2], which solves systems of polynomial equa-
tions using continuation, uses a local dimension test [1] in culling out unwanted
points that land on positive dimensional sets. We have adapted that test for
the current purpose; the result is an algorithm, LocalDimFinder, available at
the Bertini website [2]. The code, as detailed below, tests a specified range
of dimensions and returns the d-bounded local dimension if it falls within the
specified range.

Function: LD = LocalDimFinder(f, z, d, Dy, Dy)
Inputs:
Complex analytic system f : CN — C™,
Point z € Z = V¢ (f),
Depth bound (integer) d>1,
Lower and upper dimension bounds (integer) 0 < Dy < Dj.

Outputs:
dim, ; Z, if dim_ ; Z € [Do, D1];
LD = Dy, if dimz’[zZ < Dy;
“not found”, if dimzﬂZ > Ds.
Begin
Set d =0 and, for k = Dy, ..., D1, set cx0 =1 and s, = Continue.
Fordzl,...,(f

For k = Dy, ..., Dy, if s, = Continue, do the following:
Form M(z) for S(f,k) and set ¢ ¢ = corank Mg4(2).
If ci,q = ck,d—1, set s, = Stabilized.
If {k | sg = Stabilized} = 0, return LD = “not found”.
Otherwise, return LD = min{k | s, = Stabilized}.
End

The actual code also prints out the sequences ci 4 and, as appropriate, gives
messages equivalent to conclusions in (12) or (13). The code takes advantage
of the multiprecision capabilities built into Bertini to accurately compute the
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Figure 2: Planar four-bars: (a) general, (b) foldable, and (c) degenerate

required coranks. Since z is given numerically, it will usually only be an ap-
proximate zero of f. It is the user’s responsibility to make sure it is accurate
enough to provide a meaningful answer.

In recent work, Zeng [25] has given a more efficient algorithm for computing
the sequences c4(z). As of this writing, we have not yet revised LocalDimFinder
to take advantage of this.

9. Examples

9.1. Planar Four-bars

It is well-known that a non-degenerate planar four-bar moves with one degree
of freedom. We take this familiar example as an introductory illustration of the
local dimension finding technique, testing a generic four-bar, a four-bar in a
singular position, and a degenerate four-bar.

A pose of a planar four-bar with coupler point can be specified as the (z,y)-
coordinates of five points, Ag, By, Co, Dg, Py, two of which, say Ay and By are
the stationary ground pivots, while Cy and Dy are initial positions of the joints
on the coupler link and P, is the initial position of the coupler point (see Fig. 2).
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After the linkage moves, the homologous points to Cy, Dy, Py are C, D, P and
the six coordinates of these are the variables in the assembly conditions. These
conditions simply state that the links must have constant length, that is, f(x) =
0, where

f1=1C = Ag> = |Co — Ao|?

f2=|D = By|* — |Dy — Bo|?

f@) = q fo=|C—D —|Co— Dol (16)
fa=|P—C]> =Py~ Co|?

fs =P —D|* —|Py — Do|?

r = (CaDaP):(cazacyvdwvdyvaapy)- (17)

The “point of construction,” as we shall call z = (Cy, Dy, Fp), is on Ve(f),
so we may check the dimension at that point. We have n = 5 functions and
N = 6 variables, so by Eq. 3,

N—-n=1 < dimz:(Co,Do,Po) Vc(f)

We will test the local dimension for three cases:

1. general;
2. foldable, i.e., (Ao, Bo, Co, Dp) collinear; and
3. degenerate with Ag = By and Cy = Dy.

In terms of the discussion of § 7, the parameter space for planar four-bars
in the foregoing formulation is (Ao, By, Co, Do, Py) € C!°. For each of the
three families (general, foldable, degenerate), we can generate a random point
satisfying the defining conditions. In the generic and degenerate cases, it is easy
to see that the point of construction is a general point on the motion set of the
linkage, while in the foldable case, the point of construction is a special point
of the motion where the linkage is actually folded.

Calling LocalDimFinder with dimension range [1, 3] and depth bound d=5
gives the results shown in Table 2. Since the dimension must be at least one,
we have a conclusive result that the generic and foldable cases have dimension
one, that is, the four bar has 1DOF. The foldable four-bar gives multiplicity
two, which reflects the fact that the test point is at a self-crossing of the motion
curve. The degenerate four-bar, which is in fact equivalent to a 2DOF RR
serial chain, is determined to have either a solution set of dimension 2 and
multiplicity 1 or else it is dimension 1 with multiplicity 6 or greater. To use the
local dimension test to definitively conclude that the true dimension is 2, one
would need an independent bound on the multiplicity and, if that is larger than
6, one would need to compute the sequence c; 4 farther. The a priori bound
that the multiplicity cannot exceed the total degree of f(z) (2° = 32) is too
high to be practical.

In all three cases, we are testing a generic four-bar from the indicated fami-
lies, so we may conclude that the dimensions computed are the generic degrees
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case k| ckd stabilized?
11,1 yes
general 21,1 yes
31,1 yes
1] 1,22 yes
foldable 2| 1,1 yes
31,1 yes
11 1,2,3,4,5,6 no
degenerate | 2 | 1,1 yes
31,1 yes

Table 2: Local dimension test results for the four-bar problems.

of freedom of linkages in the respective families. In the foldable case, we see that
¢1,4 has depth greater than zero, indicating that the test pose (the folded pose)
is either singular or else the whole motion curve is nonreduced. We cannot tell
the difference from the local test at this special point of construction. If we were
to test a generic point of the motion curve, we would find that it is nonsingular,
hence the motion curve is reduced and therefore the folded position is singular.
This underscores that although the local dimension test at a singular point on
a motion set gives a definitive answer for the degrees of freedom of the motion,
the point is still special and hence may have a higher multiplicity than general
points of the motion. Though it does not happen here, one must also keep in
mind that it is possible for two or more motion components to meet at a singu-
lar point, and if so, the local dimension test will return the highest dimension
among these—one does not get any signal whether or not lower dimensional
components also exist.

9.2. Foldable Griffis-Duffy 6SPU Platform

A foldable Griffis-Duffy 6SPU platform is a type of Stewart-Gough platform
that consists of two congruent equilateral triangles with legs of length equal
to the altitude of the triangles that connect vertex to midpoint and midpoint
to vertex sequentially around the triangles. This platform was studied in [15],
where it was found to have a 1IDOF motion that has seven real components.
In the formulation of that paper, based on Study (soma) coordinates, these
components are 3 double lines, 3 quadrics, and one quartic. The folded pose
of the mechanism, in which the two triangles coincide while the legs lie along
their common altitudes, is very singular, as it lies at the intersection of all
three double lines and a self-crossing of the quartic. Thus, we expect the local
dimension of the folded configuration to be one and its multiplicity to be 8.
For this mechanism, it happens that rankf = 6 and N = 7, so we know the
dimension must be at least 1 (see Eq. 3). Using LocalDimFinder with & € [1, 3]
and d = 5, we obtain the following three stabilized sequences:

Cl,d = 1,4, 7,8,8 C2.d = 1,3,3 C3.d = 1,2,2.
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The results of this computation match the expected dimension, 1, and multi-
plicity, 8.

9.3. The SNU 3UPU Parallel Robot

A model of a parallel-link robot built at Seoul National University circa 2001
by F. Park and colleagues displayed an unexpected mobility. The device is a
3-UPU mechanism, that is, it consists of two triangles with vertices connected
by prismatically extending legs with universal joints at each end. The specific
model had equilateral triangles of unequal size. In the “home” position, the
leg lengths are all equal and the triangles are in parallel planes, one centered
above the other. (That is, the line through their centers is perpendicular to
the planes.) When the leg lengths are locked in this position, the mechanism
was expected to be rigid, using the Griibler-Kutzbach formula, but the physical
model allowed considerable motion. For studying cases with the leg lengths
locked, we may consider the robot as a 3-UU device.

Several analyses have been done that explain this behavior, with perhaps
the most complete being one by Walter, Husty, and Pfurner [22]; our analysis
is based on their equations (3.2-3.8). We applied LocalDimFinder to the home
pose of the robot and found that

co.a=1,3,4,4.

This reconfirms the statement made in [22] that the home pose is, in theory, an
isolated solution point of multiplicity 4. (Additionally, we see that it has depth
2.) The high multiplicity allows the real device to move in the presence of joint
tolerances and link elasticity. As this computation was done for a random size of
the triangles and the leg length, we expect this behavior to persist generically. Of
course, there may be exceptions that meet extra conditions whose dimensionality
increases.

In fact, as discussed in [22], there do exist examples of the 3-UPU mechanism
that have positive-dimensional solution components. One case, given in Eq. 5.2
of [22], is

{h1 = 2hs,d; = 3ha,ds = d3},

where hi and hy are the circumradii of the base and upper triangles, resp., and
di1,dsa, ds are the three leg lengths. We consider a special case of this, namely

{hy=2,hy = 1,dy = d = d3 = 3}.. (18)

For this case, the home position has the two triangles separated by distance
v/2. This point turns out to have sequence co,q exactly the same as the general
case above, that is, the home position is zero-dimensional with multiplicity 4,
depth 2. However, for the same leg lengths, the mechanism can be assembled
in a different mode, which using the notation of [22] is given as the line

[0, 21, %2, T3, Yo, Y1, Y2, ¥3] = [0,,0,-1,1,0,0,0], «€R. (19)
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k Ch,d stabilized?
0 1,2,3,4,5,6 no
1 1,1 yes

Table 3: Results for the 3-UU mechanism with parameters (18) at a point satisfying (19).

Testing a random point on this line, with the normalizing condition yg = 1,
LocalDimFinder with & € [0,1] and d = 5 gives the results in Table 3. We
see that, as claimed in [22], the test point is on a 1DOF assembly mode. In
fact, it has multiplicity 1. (To be more accurate, we only know that either the
mechanism has a one DOF motion or else it is rigid with multiplicity at least 6.)

9.4. A Cubic-Centered 12-Bar

The following example is included as an illustration of the difference between
real dimension and complex dimension.

A collapsible cube, consisting of 12 scissors linkages each aligned with one
edge of a cube, was presented in [23]. Locking the scissors, the mechanism
becomes a 12-bar spherical linkage, with one link along each edge of a cube and
with rotational joints at the vertices of the cube, all joint axes meeting at the
center of the cube. Using the methodology espoused in [23], one may convert
the links into triangles joined at their vertices. This comes down to a set of nine
points, one for each vertex of the cube and its center as illustrated in Figure 3.
Let us consider such a cube with side length 2. To fix a ground link, we take
the center point, (0,0,0), and two adjacent vertices, say P; = (—1,1,—1) and
Py = (—1,-1,-1), to be fixed. The remaining six vertices are free to move
subject to maintaining their initial relative distances, that is, subject to:

fij =P = Pj|* — 4,
{i,5} € {(1,2),(3,4),(5,6), (1,5), (2,6),

(3,7),(4,8),(1,3),(2,4),(5,7), (6,8)}; (20)
g = P> -3, i€{1,2,3,4,5,6}. (21)
This is a total of m = 17 equations in the 18 coordinates of points Py, ..., Ps.

Accordingly, we know that the dimension of the solution set is at least one
dimensional. Indeed, if we test the assembly in which all of the points are at
the nominal vertices of the cube, i.e.,

(Plv v »PG) = ((17 ]-v ]-)7 (]-7 _]-7 1)) (17 ]-7 _1)7
(1,-1,-1),(-1,1,1),(-1,-1,1)),
LocalDimFinder gives the sequence c; 4 = 1,2,2 indicating that the local di-
mension is 1 with multiplicity 2 and depth 1. Since the multiplicity is greater

than one, there is the possibility that the real dimension is less than the complex
dimension. Indeed, this is true for the case at hand: the complex curve crosses
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Figure 3: Cubic-Centered 12-Bar

itself in the home position, which turns out to be an isolated point over the
reals.

If the mechanism is modified slightly by moving the central point off of the
origin and adjusting the distances to it accordingly, then the mechanism does
have a 1DOF real motion. The only change to the above equations is to replace
g; with g; as

gi:|Pi_O|2_‘-PiO_O|27 izla"'763

where O is the central point and Pjg is the initial position of point P;. As O
is moved towards the origin, one finds that the real 1IDOF motion shrinks to a
smaller and smaller loop approaching a single point in the limit. At the origin,
an actual mechanism will retain a vestige of this motion as a wobbliness, an
infinitesimal degree of freedom of multiplicity 2.

It is interesting to note that the exact cubic-centered mechanism can be
assembled in another mode where its real dimension and its complex dimension
are both one. A point on this assembly curve is

(Pr,..., Ps) = ((=1,1,-1),(1,1,-1), (1,1, 1),
(1,-1,-1), (=1, -1,-1),(1, -1, -1)).

In this configuration, P; and P, are at their original positions, but the points
originally on the upper face of the cube have been moved down to the lower
face, with P, = P;, P, = P3, Ps = P, and Ps = P;. The mechanism becomes
an equilateral spherical four bar.

10. Conclusions

We have given a methodology to determine the degrees of freedom of a
mechanism for the assembly mode of a given configuration. The method is a
generalization of testing the rank of the Jacobian matrix at the given configura-
tion; specifically it works by testing the rank of certain arrangements of higher
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partial derivatives into matrices known as Macaulay matrices. We emphasize
that the kinematicians’ notion of degrees of freedom is precisely the same as
the mathematicians’ concept of dimensionality. When a mechanism has several
assembly modes with different degrees of freedom, the applicable mathematical
terminology is local dimension. The local dimension test described here is based
on prior work [1] using multiplicity ideas from [3, 6]. Taken alone, the rank tests
cannot distinguish between finite degrees of freedom and infinitesimal degrees
of freedom that exceed a prespecified multiplicity bound. However, we also de-
scribe several other inequalities that place limits on the possible dimensionality
and these often provide an exact answer for the degrees of freedom. At the same
time, when infinitesimal degrees of freedom are present, the Macaulay matrices
provide multiplicity information that relates to the magnitude of motion one
may expect in these directions.

The local dimension test treats the motion variables as complex numbers.
Usually, the complex and real dimensionality of an assembly configuration are
equal, but if the multiplicity is greater than one, the real dimensionality can be
smaller. We give one example, the cubic-centered spherical 12-bar, where this
occurs. The further elucidation of such cases to determine the local dimension
in the reals will be the subject of future work.

The size of the Macaulay matrices, Mg, grows quickly with depth, d, rapidly
leading to unmanageable computations. Presently, our code is limited in this
regard, but the closedness subspace method of [25] offers help for proceeding to
greater depths.
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Figure Captions

1. A set Z with local dimensions: dimy Z = 1, dimg Z = dim¢ Z = 2.
2. Planar four-bars: (a) general, (b) foldable, and (c) degenerate.
3. Cubic-Centered 12-Bar
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