
ICMS 
Formal Abstracts

Thomas Hales



2

Formal Abstracts in Mathematics



Alert

But the technology is here now…



Sphere Packings





Interlude Sphere Packings



“Perhaps the most controversial topic to be covered in
The Mathematical Intelligencer is the Kepler Conjecture.
In The Mathematical Intelligencer, Thomas C. Hales
takes on Wu-Yi Hsiang’s 1990 announcement that he
had proved the Kepler Conjecture,. . . ”

Interlude Sphere Packings



From hales@math.lsa.umich.edu Wed Aug 19 02:43:02 1998
Date: Sun, 9 Aug 1998 09:54:56 -0400 (EDT)
From: Tom Hales <hales@math.lsa.umich.edu>
To: 

Subject: Kepler conjecture

Dear colleagues,

I have started to distribute copies of a series of papers giving a 
solution to the Kepler conjecture, the oldest problem in discrete
geometry.  These results are still preliminary in the sense
that they have not been refereed and have not even been submitted
for publication, but the proofs are to the best of my
knowledge correct and complete.

Nearly four hundred years ago, Kepler asserted that 
no packing of congruent spheres can have a density greater
than the density of the  face-centered cubic packing.  
This assertion has come to be known as the Kepler conjecture.
In 1900, Hilbert included the Kepler conjecture in his
famous list of mathematical problems.

In a paper published last year in the journal
"Discrete and Computational Geometry," (DCG), I
 published a detailed plan describing
how the Kepler conjecture might be proved.  This approach
differs significantly from earlier approaches to this
problem by making extensive use of computers.



In year 4, the referees of the Kepler conjecture gave up.  
In the end the computer code was not checked, and the 
text part of the proof was only spot checked.



Computers were once human

Referees were once human
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A formal proof is a mathematical proof that has been checked by
computer. The axioms of mathematics and the fundamental rules
of logic are programmed into a computer and every step of the
mathematical proof is verified with those axioms and rules.
Computer programs – called proof assistants – are used to
construct formal proofs. Proof assistants have been under
development for decades. There are many of them. Three of the
most influential are Mizar, Coq, and HOL (which comes in several
dialects).



John Harrison

HOL Light



The formal proof of the Kepler conjecture, which was finally 
published last year uncovered and corrected hundreds of 
errors in the proof.





Kaliszyk-Chollet-Szegedy



Kaliszyk-Chollet-Szegedy



Digital Age of Science



This project is one piece of a major long-term initiative of the
International Math Union to digitize mathematical assets.
It is long been the aim of many in the mathematical community to
build major digital libraries (1994, QED manifesto). In 2006, the
International Mathematical Union (IMU) endorsed a statement
envisioning a digital math library and that vision has grown over
time. The early focus was on digitization, aggregation, metadata,
and access.



The relationship between the computer and mathematics is
decisively di↵erent from the relationship between the computer and
the empirical sciences. The essential di↵erence is that mathematics
is capable of exact representation by computer, but the external
world only admits approximate representation by computer. This
di↵erence has enormous implications for the correct architecture of
mathematical databases. A database of formal math abstracts can
capture true mathematical content in a way that say a database of
chemical compounds never will.



A concrete proposal: mathematical FABSTRACTS
(formal abstracts)

Given today’s technology, it is not reasonable to ask for all
proofs to be formalized. But with today’s technology, it seems
that it should be possible to create a formal abstract service
that

• Gives a statement of the main theorem(s) of each
published mathematical paper in a language that is both
human and machine readable,

• Links each term in theorem statements to a precise
definition of that term (again in human/machine readable
form), and

• Grounds every statement and definition is the system in
some foundational system for doing mathematics.
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Set Theory (Zermelo) Type Theory (Russell)

Sets mix. Types never mix.

Two responses to Russell’s paradox
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dependent types
Curry-Howard



HOL Light Mizar Coq

Designed for use with multiple foundational 
architectures, Isabelle’s early
development featured classical constructions in set 
theory. However,

Isabelle Metamath Lean

HOL Light has an exquisite minimal 
design. It has the smallest kernel of any 
system. John Harrison is the sole 

Once the clear front-runner, it now shows signs of age. 
Do not expect
to understand the inner workings of this system unless 
you have been

Coq is built of modular components 
on a foundation of dependent type 
theory. This system has grown one 
PhD thesis at a time.

Does this really work? Defying expectations, 
Metamath seems to function
shockingly well for those who are happy to 
live without plumbing.

Lean is ambitious, and it will be massive. Do 
not be fooled by the name.
“Construction area keep out” signs are 
prominently posted on the perimeter fencing.



(Foundations)

Every foundational system needs to deal with subsets.

Most type systems in use for mathematics do not have an
intrinsic notion of subtype.

Gonthier makes great efforts to accommodate subgroups in
Coq (centralizers, normalizers, Sylow-subgroups, etc.). He
rebrands group theory as subgroup theory. He considers the
groups in a given context as all subgroups of a large universal
group. This eliminates the difficulty of treating the carrier of
each subgroup as a separate type. In some way it is a
throwback to Weil’s obsolete Foundations of Algebraic
Geometry, which takes the fields in a given context of a given
characteristic as all subfields of a large algebraically closed
universal domain.

4



Even proof assistants based on set theory need to make
decisions about subsets. In ZFC, we do not naturally have

N ⇢ Z ⇢ Q ⇢ R ⇢ C.

The Mizar proof assistant achieves these inclusions by an act
of butchery. The image of N in Z is excised from Z and
replaced by N, and so forth. But these decisions are quite
arbitrary. Why not Q ⇢ Qp?

The HOL Light proof assistant maintains the explicit
embeddings:

N ! Z, Z ! R, etc.,

(but Q ⇢ R).
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Proof assistants also need to deal with identifications.

(Univalence offers a general solution to this issue, but is
univalence inevitable? See Chris Kapulkin’s talk today at
16:20.)

For example, we identify Qp (the completion of the field Q
with respect to the p-adic norm) with the field of fractions of
Zp (defined as an inverse limit of Z/pnZ).

We identify

GL(2,A) and ⇧0
vGL(2,Qv),

where A = ⇧0
vQv . However, the elements of one are matrices

with coefficients in a restricted product of fields, but the right
hand side is are restricted product of groups.

We identify X ⇥ (X ⇥X) with (X ⇥X)⇥X , except when
we don’t.
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Kevin Buzzard

Stacks project in Lean
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LocalLanglandsCorrespondence in theAbelianCase
Kenny Lau

Torus
In Algebraic Geometry, a torus is an affine algebraic group T over a

field F such that there is a finite Galois extension K of F with the

property that T ⇥F Spec(K) is isomorphic to Spec(K[Zn
]) for some n

as affine algebraic groups. In that case, we call T an F -torus that splits

over K. If K = F , we call it a split torus.

Here are some objects associated to T :

1. X
⇤
(T ) := HomK-GS(TK , GL1), its character group;

2. X⇤(T ) := HomK-GS(GL1, TK), its cocharacter group;

3. bT := HomAb(X⇤(T ),C⇥
);

4.
L
T := bT oGal(K/F ), its Langlands dual

where:

• GL1 := Spec(K[Z]);

• K-GS is the category of group schemes over K

Note that the Langlands dual is a topological group, since bT is a finite

product of copies of C⇥
, and so

L
T is a finite union of copies of bT .

Weil group
If F is a non-archimedean local field, fix an algebraic closure F of F .

The Weil group WF/F is defined to be:

{� 2 Gal(F/F ) : �|Fur = Frob
k

for some k 2 Z}

where F
ur

is the maximal unramified extension of F and Frob is

Frobenius map. Local class field theory says that W
ab
F/F

⇠= F
⇥

canon-

ically. If K is a finite Galois extension of F , then WF/K is a normal

subgroup of WF/F , since they fit in this short exact sequence:

1 WF/K WF/F Gal(K/F ) 1

Then, we define the relative Weil group WK/F := WF/F /W
c
F/K

,

where W
c
F/K

denotes the closure of the commutator of WF/K . We

have this short exact sequence:

1 K
⇥

WK/F Gal(K/F ) 1

Similar groups can be constructed for the two archimedean local fields

based on the last short exact sequence.

Example: The Trivial Case
Let us consider the simplest case, i.e. the case where the torus is just

GL1, i.e. Spec(F [Z]). This torus is split, and WF/F = F
⇥

acts on

bT = C⇥
trivially, and T (F ) is just F

⇥
. Since the action is trivial, co-

homological classes are just group homomorphisms, so the theorem is

verified since both sides are the same. The actual content in this case is

actually the fact that WF/F = F
⇥

, which is the main theorem of local

class field theory. Therefore, local Langlands Correspondence for GL1

is just local class field theory.

Statement and Motivation of Theorem
The theorem states that for any local field F , finite galois extension K,

T an F -torus that splits over K, there is a canonical bijection:

H
1
c (WK/F ,

bT ) ! HomTopGrp(T (F ),C⇥
)

where:

• TopGrp is the category of topological groups;

• T (F ) is the F -points of the torus T

Langlands is interested in representations of affine algebraic groups in

general, GLn in particular, not just for tori. However, since a torus is

isomorphic to (GL1)
n

after a base change, it becomes a slight general-

ization of local class field theory (see above), a stepping stone for the

greater Langlands correspondence. Langlands wants to parametrize

the representations (i.e. the right hand side of the bijection) by repre-

sentations of the Weil group onto the Langlands dual. Note that we

are only interested in one-dimensional representations since all irre-

ducible representations of T (F ) is one-dimensional.

Example: The Actual Torus
The torus everyone is familiar with is (S

1
)
2

where S
1 ✓ R2

is the

unit circle. We shall build the correspondent torus in the algebraic

geometry land.

Classically, S
1
= {(x, y) 2 R2 | x2

+ y
2
= 1}, so we can build an affine

R-scheme whose R-points is S
1
, namely Spec(R[X,Y ]/(X

2
+Y

2�1)),

which we call S
1

from now on. R-product of affine schemes corre-

spond to R-tensor product of the coordinate rings, so we get (S
1
)
2
=

Spec(R[X,Y, Z,W ]/(X
2
+ Y

2 � 1,W
2
+ Z

2 � 1)).

To see that it is actually an torus, note that the scheme after base

change to C is just Spec(C[Z2
]), identifying X + iY with (1, 0), X � iY

with (�1, 0), Z + iW with (0, 1), and Z � iW with (0,�1).

Representation of Weil group
We consider continuous group homomorphisms ' making the dia-

gram commute:

1 WF/K WF/F Gal(K/F ) 1

1 bT L
T Gal(K/F ) 1

' id

We obtain a homomorphism '
0
: WF/K ! bT in the second column.

The codomain is abelian, so ker'
0 ✓ W

c
F/K

. This gives a homomor-

phism '
⇤
: WK/F ! L

T . Viewing the underlying set of
L
T as a carte-

sian product, the second coordinate of '
⇤
(�) is determined by �, so

we can focus on the first coordinate, i.e. ⇡1 � '⇤
: WK/F ! bT . This is

not a group homomorphism, but a crossed homomorphism, i.e. a 1-

cocycle. The isomorphism classes of such ' correspond to continuous

cohomology classes of degree 1, denoted H
1
c (WK/F ,

bT ).

Implementation in Lean
I formalized the important parts and the fundamental parts of the

statement of this theorem in Lean, a proof assistant. My Github

repo is located at: https://github.com/kckennylau/local-

langlands-abelian.

Here is a list of the files in my repo as of June 18:

Weil_group.lean, abelianization.lean, algebra.lean,

algebra_tensor.lean, field_extensions.lean,

group_cohomology.lean, monoid_ring.lean,

polynomial.lean, quotient_group.lean, statement.lean,

tensor_product.lean, topological_group.lean,

torus.lean.

There is currently 3102 lines in the repo.

The statement of the theorem becomes:

H1c (relative_Weil_group F AC W ht.split)

(torus.hat F AC T ht) ' topological_group_hom

(torus.rat_pt F AC T ht) (units C)
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Other Lean Sessions 
ICMS

Wed 15:30 Mario Carneiro: Lean 3 Mathematical Library 

Wed 15:55 Rob Lewis: Interface between Lean and Mathematica



Hypergame Paradox
• Some games necessarily end after a 

finite number of moves: (chess, tic-tac-
toe, go). 

• Other games might continue forever 
(rock-paper-scissors played until 
somebody is up by five).  

• Hypergame:  

• first move: pick any game that 
necessarily ends after finitely many 
moves 

• remaining moves: play the game that 
was picked. 

• Hypergame necessarily ends after 
finitely many moves.

(Zwicker 1987)



Hypergame Paradox
• Hypergame:  

• first move: pick any game that 
necessarily ends after finitely 
many moves 

• remaining moves: play the game 
that was picked. 

• Hypergame necessarily ends after 
finitely many moves. 

• But hypergame does not 
necessarily end after finitely many 
moves.  What if the first move picks 
hypergame, and the second, etc.?

(Zwicker 1987)

H

H

H



Version 1

Version 2

Credit: Earlier formal analysis of hypergame was made by Krebbers.





Hypergame in Lean
• The hypergame has universe 

level one greater than the 
games it plays from. 

• Each choice of hypergame as 
the first move of hypergame 
drops the universe level by 
one. 

• At the lowest universe level, 
only ordinary games are 
available, and the hypergame 
necessarily ends after finitely 
many moves.

H

H

H



The technology has reached maturity. Major projects involving
hundreds of thousands of lines of computer code have been
completed. Here are the big four :

I SeL4: the formal verification of the microkernel of an
operating system;

I CompCert: the formal verification of a C compiler;

I Feit-Thompson Odd Order Theorem: the formal verification
of a major result in finite group theory;

I the formal verification of the proof of the sphere packing
problem (the Kepler conjecture) in three dimensional
Euclidean space.



43

Formal Abstracts in Mathematics



A concrete proposal: mathematical FABSTRACTS
(formal abstracts)

Given today’s technology, it is not reasonable to ask for all
proofs to be formalized. But with today’s technology, it seems
that it should be possible to create a formal abstract service
that

• Gives a statement of the main theorem(s) of each
published mathematical paper in a language that is both
human and machine readable,

• Links each term in theorem statements to a precise
definition of that term (again in human/machine readable
form), and

• Grounds every statement and definition is the system in
some foundational system for doing mathematics.
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The definitions of mathematics

The Oxford English dictionary (2nd edition) has 273,000
headwords and over 600,000 word forms. (The longest entry
is for the word set, which continues for 25 pages).

Medicine has a specialized terminology of approximately
250,000 items [Kucharz].

The Math Subject Classification (MSC) lists over 6000
subfields of mathematics.

9
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Capturing Definitions

What is normal in math?



Capturing Definitions



Definitions of group (algebra)

• A group is a set with a binary operation, identity element,

and inverse operation, satisfying axioms of associativity,

inverse, and identity.

• A group object in a category. A group in the first sense is

a group object in the category of sets. A Lie group is a

group object in the category of smooth manifolds. A

topological group is a group object in the category of

topological spaces. An affine group scheme is a group

object in the category of affine schemes. (Caution: the

Zariski product topology is not the product topology.)

• A Poisson-Lie group a group object in the category of

Poisson manifolds, except that the inverse operation is

not required to be a morphism of Poisson manifolds. (In

2

Capturing Definitions

What is a group?



general, the inverse is an anti-Poisson morphism.)

• A quantum group is an object in the opposite category to

the category of Hopf algebras.

• A compact matrix quantum group is a C⇤
-algebra with

additional structure (Woronowicz).

• A strict 2-group is a group object in the category of

categories (or a category object in the category of

groups).

• A 2-group . . .

• An n-group . . .

3

Capturing Definitions

What is a group?



Popular candidates for next week’s Fields medal, according to
https:

//poll.pollcode.com/44839318_result?v

• Peter Scholze 1246 votes

• Fernando Coda Marques 946 votes

• Alesso Figalli 592 votes

• Geordie Williamson 422 votes

• Ciprian Manolescu 441 votes

• Simon Brendle 372 votes

• Maryna Viazovska 326 votes

How difficult are formal abstracts of their main theorems?

12

Formalizing statements of theorems

Project: give formal abstracts for next week’s Fields medals.



Scholze - perfectoid spaces. There has been a discussion led
by Kevin Buzzard about putting this work into the Lean
theorem prover.

Michael Harris, “the concept of a perfectoid space is one of
the most difficult notions ever introduced in arithmetic
geometry, which has a long tradition of difficult notions.”

Fix a prime number p. A perfectoid field K is a complete
non-archimedean field with residue characteristic p such that
the value group of K⇤ in R>0 is not discrete, and such that the
Frobenius (p-power) map

K
�
/p ! K

�
/p

is surjective, where K
� = {x 2 K | |x|  1} is the ring of

integers of K.

13

Scholze



Marques: The Willmore energy of a torus immersed in R3 is
at least 2⇡2.

(wiki) Let v : M ! R3 be a smooth immersion of a compact
orientable surface, and give M a Riemannian metric from this
immersion. Let H : M ! R be the mean curvature (the
arithmetic mean of the principal curvatures 1 and 2 at each
point). The Willmore energy is given by

W (M) =

Z

M
H

2
dA.

14

Figalli - ?? - Improved versions of this and that in optimal
transport.
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Marques

Figalli



Williamson - algebraic proof of the Kazhdan-Lusztig
conjectures.
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Manolescu - non-triangulable manifolds exist in any
dimension greater than four.

A triangulation is a homeomorphism with the geometric
realization of a simplicial complex.

17

Manolescu

Viazovska - No packing of congruent balls in
eight-dimensional Euclidean space has density greater than
the E8 packing.

18

Viazovska

Brendle - sphere theorem strengthened to differentiable
sphere theorem: If M is a complete, simply-connected,
n-dimensional Riemannian manifold with sectional curvature
taking values in the interval (1, 4] then M is homeomorphic
(and in fact, diffeomorphic) to the n-sphere.

19

Brendle



Why?

• bring the benefits of proof assistants to the general
mathematical community;

• set standards for the sciences;

• set the stage for applications to ML in mathematical
proofs;

• move math closer to the computer.
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Thang Long University, Hanoi, Vietnam
Partners: CMU, Pitt, Hanoi



Formal Abstracts mini-course,  
Thang Long University,  
Dec 29, 2017



Thank you!


