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Interlude Sphere Packings
® The Mathematical

wntelligenées

We’'re Not Afraid

Of
Controversy...

We Welcome It!

The Mathematical Intelligencer has long been the main forum for debate between some
of the world’s most renowned and respected mathematicians. The Mathematical
Intelligencer has always provided a place for the debate of all mathematical issues. Inside

you'll find just a few of the most notable controversies that The Mathematical

Intelligencer has proudly published in the past, and some of the controversies you can

look forward to in the future.




Interlude Sphere Packings

THE KEPLER CONJECTURE CONTROVERSY

Perhaps the most controversial topic to be covered in The Mathematical Intelligencer is the Kepler

Conjecture. In The Mathematical Intelligencer (16:3), Thomas C. Hales takes on Wu-Yi Hsiang’s

1990 announcement that he had proved the Kepler Conjecture, the conjecture that no arrangement of

spheres of equal radius in 3-space has density greater than that of the face-centered cubic packing.

Following are excerpts from the article
“The Status of the Kepler Conje:

Hsiang was honored for his work in January
meetings of the AMS-MAA, by being inv
plenary address entitled “The proof of
Kepler's conjecture on the sphere-
packing problem.”

As a result of such announcements,
many are prone to accept Hsiang’s
solution to the sphere-packing prob-
lem. Even if Hsiang withdraws his
claims, some might continue to believe,
for years to come, that the problem has
been successfully solved. It has become
necessary, therefore, to write this arti-
cle on the status of the Kepler conjec-
ture, to correct the public record.

What is the significance of this nega-
tive result? Hsiang's early preprint
omitted the argument for seven-faced
polyhedra; it merely remarked that “it
is easy to see that no vertices...have
more than six forks.” (The number of
forks is the number of edges or faces
surrounding the vertex.) The fact that this much analysis was
required to study a single arrangement shows that those who
challenged his “easy to see” claim had more than ample justi-
fication for doing so. He claims to use deformation arguments,
and deformation arguments (properly developed), even if lin-
earized, require the solution to large systems of equations.

His packing bounds are dependent on this result. In later argu-
ments he uses case-by-case arguments that list all relevant
polyhedra with only four, five, or six faces around a given edge.
Hence, we must put all his later conclusions on indefinite hold.
One is left to conclude that his hasty reduction has no real
substance to it and that his critical case remains an isolated
Lest case.

" HSIANG RESPONDS

In the end, 1 feel that Hsiang has missed the point of the sub-
ject of sphere packings. Many packing problems have geo-

“Perhaps the most controversial topic to be covered in
The Mathematical Intelligencer is the Kepler Conjecture.
In The Mathematical Intelligencer, Thomas C. Hales
takes on Wu-Yi Hsiang’s 1990 announcement that he
had proved the Kepler Conjecture,. .. "

implausible configurations could be
dismissed without proof. But rigor
requires that proofs be given.

One of the most unsettling aspects of
his article is his deliberate and per-
sistent use of methods that are known
to be defective. The errors in his
hole-fitting principle and his size-
decreasing deformation were point-
ed out to him some time ago. His
claims over the last 3 years that the
next revision will answer all objections have grown tiresome.

MATHEMATICAL
SCULPTURE

In conclusion, 1 offer a suggestion. First, Hsiang should with-
draw his claim to have resolved the Kepler conjecture.
Mathematicians can easily spot the difference between
handwaving and proof. Then, Hsiang should isolate the state-
ments in his article that he was unable to prove rigorously. He
should show carefully how the Kepler conjecture would
follow from these statements. In this way, his work would
make an important contribution to the field. It would provide
a concrete program that could eventually lead to a solution to
the problem. Instead, by presenting experimental hypothesis
as fact, he destroys the credibility of his own work.

Wu-Yi Hsiang has agreed to publish his rejoinder to Thomas Hales, and the




From hales@math.Isa.umich.edu Wed Aug 19 02:43:02 1998
Date: Sun, 9 Aug 1998 09:54:56 -0400 (EDT)

From: Tom Hales <hales@math.lsa.umich.edu>

To:

Subject: Kepler conjecture

Dear colleagues,

| have started to distribute copies of a series of papers giving a
solution to the Kepler conjecture, the oldest problem in discrete
geometry. These results are still preliminary in the sense

that they have not been refereed and have not even been submitted
for publication, but the proofs are to the best of my

knowledge correct and complete.

Nearly four hundred years ago, Kepler asserted that

no packing of congruent spheres can have a density greater
than the density of the face-centered cubic packing.

This assertion has come to be known as the Kepler conjecture.
In 1900, Hilbert included the Kepler conjecture in his

famous list of mathematical problems.

In a paper published last year in the journal

"Discrete and Computational Geometry," (DCG), |
published a detailed plan describing

how the Kepler conjecture might be proved. This approach
differs significantly from earlier approaches to this



In year 4, the referees of the Kepler conjecture gave up.
In the end the computer code was not checked, and the
text part of the proof was only spot checked.

iii. Checking (and re-running) the program, which is working in Phase 3,
might detect a “case” in which the mentioned function is negative. Then
the theory would collapse (in its present form), and would require amend-
ment, since the suggested decomposition of the space would not have the

claimed property.

With all this in mind one would prefer to have Phase 2 and Phase 3 checked prior to
start working on Phase 1 (and minimize the chance that the essential work of careful
reading of the manuscript might prove useless). Since I am not planning to read any
part of Phase 2 and/or 3, — and some other referees might share my views — I would
like to ask you to inform me whether the Editorial Board has organized any separate
proceedings regarding the checking of Phase 2 and 3 or no support of this kind can be
expected.



Computers were once human

Referees were once human
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HaF.

STRACTS

A formal proof is a mathematical proof that has been checked by
computer. The axioms of mathematics and the fundamental rules
of logic are programmed into a computer and every step of the
mathematical proof is verified with those axioms and rules.
Computer programs — called proof assistants — are used to
construct formal proofs. Proof assistants have been under
development for decades. There are many of them. Three of the
most influential are Mizar, Coq, and HOL (which comes in several
dialects).
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Volume 5 2017, e2 Citedby 8 @& Access

8 Open access
A FORMAL PROOF OF THE KEPLER CONJECTURE

THOMAS HALES (@1), MARK ADAMS (a2) (a3) GERTRUD BAUER (34), TAT DAT DANG (35) ., @
https://doi.org/10.1017/fmp.2017.1  Published online: 29 May 2017

Abstract This article describes a formal proof of the Kepler conjecture on dense sphere packings in a
combination of the HOL Light and Isabelle proof assistants. This paper constitutes the official
published account of the now completed Flyspeck project.

THOMAS HALES (@1), MARK ADAMS (82) (a3) GERTRUD BAUER (24), TAT DAT DANG (25), JOHN HARRISON (26), LE TRUONG
HOANG (87), CEZARY KALISZYK (@8), VICTOR MAGRON (29), SEAN MCLAUGHLIN (a10), TAT THANG NGUYEN (37), QUANG
TRUONG NGUYEN (a1), TOBIAS NIPKOW (a11), STEVEN OBUA (a12), JOSEPH PLESO (a13), JASON RUTE (a14), ALEXEY

SOLOVYEV (@15), THI HOAI AN TA (@7), NAM TRUNG TRAN (@7), THI DIEP TRIEU (@16), JOSEF URBAN (@17), Ky vu (a18) and
ROLAND ZUMKELLER (@19) <

The formal proot of the Kepler conjecture, which was finally
published last year uncovered and corrected hundreds of
errors in the proof.



where the_kepler_conjecture is defined as the following term

“(!'V. packing V
==> (?c. !'r. &l <=r
==> &(CARD(V INTER ball(vec 0,r))) <=
pi x r pow 3 / sqrt(&18) + ¢ x r pow 2))°

In standard mathematical language, this states that for every packing V (which is identified
with the set of centers of balls of radius 1), there exists a constant ¢ controlling the error
term, such that for every radius r that is at least 1, the number of ball centers inside a
spherical container of radius r is at most pi *x r*3 / sqrt(18) , plus an error term of smaller
order. As r tends to infinity, this gives the density bound pi / sqrt(18) = 0.74+, which is
the density of the face-centered-cubic packing.

The term the_nonlinear_inequalities is defined as a conjunction of several hundred
nonlinear inequalities. The domains of these inequalities have been partitioned to create
more than 23,000 inequalities. The verification of all nonlinear inequalities in HOL Light on
the Microsoft Azure cloud took approximately 5000 processor-hours. Almost all verifications
were made in parallel with 32 cores, hence the real time is about 5000 / 32 = 156.25 hours.
Nonlinear inequalities were verified with compiled versions of HOL Light and the verification
tool developed in Solovyev's 2012 thesis.

To check that no pieces were overlooked in the distribution of inequalities to various cores,
the pieces have been reassembled in a specially modified version of HOL Light that allows
the import of theorems from other sessions of HOL light. In that version, we obtain a formal
proof of the theorem

|- the_nonlinear_inequalities



Kaliszyk-Chollet-Szegedy

Published as a conference paper at ICLR 2017

HOLSTEP: A MACHINE LEARNING DATASET FOR
HIGHER-ORDER LOGIC THEOREM PROVING

Cezary Kaliszyk Francois Chollet, Christian Szegedy

University of Innsbruck Google Research

cezary.kaliszyk@uibk.ac.at {fchollet, szegedy}@google.com
ABSTRACT

Large computer-understandable proofs consist of millions of intermediate logical
steps. The vast majority of such steps originate from manually selected and man-
ually guided heuristics applied to intermediate goals. So far, machine learning has
generally not been used to filter or generate these steps. In this paper, we introduce
a new dataset based on Higher-Order Logic (HOL) proofs, for the purpose of de-
veloping new machine learning-based theorem-proving strategies. We make this
dataset publicly available under the BSD license. We propose various machine
learning tasks that can be performed on this dataset, and discuss their significance
for theorem proving. We also benchmark a set of simple baseline machine learn-
ing models suited for the tasks (including logistic regression, convolutional neural
networks and recurrent neural networks). The results of our baseline models show
the promise of applying machine learning to HOL theorem proving.



Kaliszyk-Chollet-Szegedy

1. CONTRIBUTION AND OVERVIEW

First, we develop a dataset for machine learning based on the proof steps used in a large interactive
proof section 2. We focus on the HOL Light (Harrison, 2009) ITP, its multivariate analysis library
(Harrison, 2013), as well as the formal proof of the Kepler conjecture (Hales et al., 2010). These for-
malizations constitute a diverse proof dataset containing basic mathematics, analysis, trigonometry,
as well as reasoning about data structures such as graphs. Furthermore these formal proof devel-

opments have been used as benchmarks for automated reasoning techniques (Kaliszyk & Urban,
2014).

The dataset consists of 2,013,046 training examples and 196,030 testing examples that originate
from 11,400 proofs. Precisely half of the examples are statements that were useful in the currently
proven conjectures and half are steps that have been derived either manually or as part of the auto-
mated proof search but were not necessary in the final proofs. The dataset contains only proofs of
non-trivial theorems, that also do not focus on computation but rather on actual theorem proving.
For each proof, the conjecture that is being proven as well as its dependencies (axioms) and may
be exploited in machine learning tasks. Furthermore, for each statement both its human-readable
(pretty-printed) statement and a tokenization designed to make machine learning tasks more man-
ageable are included.



Digital Age of Science
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VSTRACTS

This project is one piece of a major long-term initiative of the
nternational Math Union to digitize mathematical assets.

t is long been the aim of many in the mathematical community to
build major digital libraries (1994, QED manifesto). In 2006, the
nternational Mathematical Union (IMU) endorsed a statement
envisioning a digital math library and that vision has grown over
time. The early focus was on digitization, aggregation, metadata,
and access.




2.F

VSTRACTS

"he relationship between the computer and mathematics is
decisively different from the relationship between the computer and
the empirical sciences. The essential difference is that mathematics
Is capable of exact representation by computer, but the external
world only admits approximate representation by computer. This
difference has enormous implications for the correct architecture of
mathematical databases. A database of formal math abstracts can
capture true mathematical content in a way that say a database of
chemical compounds never will.




A concrete proposal: mathematical FABSTRACTS
(formal abstracts)

Given today’s technology, it 1s not reasonable to ask for all
proofs to be formalized. But with today’s technology, it seems
that it should be possible to create a formal abstract service
that

e (ives a statement of the main theorem(s) of each
published mathematical paper in a language that is both
human and machine readable,

e Links each term in theorem statements to a precise

definition of that term (again in human/machine readable
form), and

e Grounds every statement and definition is the system in
some foundational system for doing mathematics.

Wednesday, January 6, 2016



Two responses to Russell's paradox

Set Theory (Zermelo) Type Theory (Russell)

Sets mix. Types never mix.



A Primer on lype Theory

N
3 3

3

1+1=2

dependent types 5

Curry-Howard
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HOL Light Mizar

HOL Light has an exquisite minimal D

) 0 not expect
design. It has the smallest kernel of any (o understand the inner workings of this system unless
system. John Harrison is the sole you have been

|lsabelle Metamath

Designed for use with multiple foundational Does this really work? Defying expectations,
architectures, Isabelle’s early Metamath seems to function

development featured classical constructions in set ~ shockingly well for those who are happy to
theory. However, live without plumbing.

Once the clear front-runner, it now shows signs of age.

1} .
il

Coq i1s built of modular components
on a foundation of dependent type
theory. This system has grown one
PhD thesis at a time.

| ean

Lean is ambitious, and it will be massive. Do
not be fooled by the name.

“Construction area keep out” signs are
prominently posted on the perimeter fencing.



Every foundational system needs to deal with subsets.

Most type systems 1n use for mathematics do not have an
intrinsic notion of subtype.

Gonthier makes great efforts to accommodate subgroups in
Coq (centralizers, normalizers, Sylow-subgroups, etc.). He
rebrands group theory as subgroup theory. He considers the
groups 1n a given context as all subgroups of a large universal
group. This eliminates the difficulty of treating the carrier of
each subgroup as a separate type. In some way it is a
throwback to Weil’s obsolete Foundations of Algebraic
Geometry, which takes the fields in a given context of a given
characteristic as all subfields of a large algebraically closed

universal domain.



Even proof assistants based on set theory need to make
decisions about subsets. In ZFC, we do not naturally have

NCZcQcRcC.

The Mizar proof assistant achieves these inclusions by an act
of butchery. The image of N in Z is excised from Z and
replaced by N, and so forth. But these decisions are quite
arbitrary. Why not Q C Q,?

The HOL Light proof assistant maintains the explicit
embeddings:

N—Z, 7Z—R, etc.,
(but Q C R).



Proof assistants also need to deal with identifications.

(Univalence offers a general solution to this issue, but 1s

univalence inevitable? See Chris Kapulkin’s talk today at
16:20.)

For example, we identify Q,, (the completion of the field Q
with respect to the p-adic norm) with the field of fractions of
Z,, (defined as an inverse limit of Z/p"Z).

We identify
GL(2,A) and II,GL(2,Q,),

where A = II) Q,. However, the elements of one are matrices
with coefficients in a restricted product of fields, but the right
hand side is are restricted product of groups.

We identify X x (X x X) with (X x X) x X, except when
we don’t.



This example illustrates how Lean is both a programming language and a theorem
prover, allowing formal mathematics and its metadata to be combined seamlessly into a
single document. We stress that the mathematics is machine readable by a computer
proof assistant. We display the formal abstract in its raw (computer) form, but we
anticipate that viewing tools will convert this raw format into English text, Mathematica
notebook data, user friendly web browser display, MathSciNet data, and so forth:

—— the statement of Fermat's Last Theorem
axiom fermats_last _theorem :
Vixyzn:N),x>0-y>0-n>2->xXx"“n+y”™*n#z"n

def paper : document := {

authors := [ {name := "Andrew Wiles"} 1,

title := "Modular elliptic curves and Fermat's last theorem",
doi := "10.2307/2118559"

}

definition fabstract : fabstract := {

description := "This theorem bearing Fermat's name

was stated without proof by Pierre de Fermat in 1637
in the margins of his copy of Diophantus' Arithmetica.
Andrew Wiles announced a proof in 1994,

and his corrected proof was published in 1995."
sources := [cite.Document paper],

results := [result.Proof fermats_last_theorem]

}



Here is a fragment of the formal abstract for the statement of the Riemann hypothesis.
The full formal abstract will include links to each of the definitions (such as the
specification of the field of complex numbers):

def holomorphic_on (domain : set C) (f : subtype domain - C) :=
(V z : subtype domain, 3 f'z,
has_complex_derivative_at (extend_by_zero domain f) f'z z)

class holomorphic_function :=

(domain : set ()

(f : subtype domain - C)

(open_domain : is_open domain)
(has_derivative : holomorphic_on domain f)

—— notation f(z), for holomorphic functions
instance : has_coe_to_fun holomorphic_function :=
{ F := A h, subtype h.domain - C, coe := A h, h.f }

—- converges for Re(s) > 1
def riemann_zeta_sum (s : C) : C :=
¥ (A n, complex.pow n (-s) )

—— trivial zeros at -2, -4, -6,...
def riemann_zeta_trivial_zero (s : C) : Prop :=
(In:N, n>0As = (-2)xn)

—— analytic continuation of Riemann zeta function.
axiom riemann_zeta_exists :
(3! T : holomorphic_function, T.domain

= (set.univ \ {1}) A
Y s : subtype T.domain, re(s) > 1 » T(s) =

riemann_zeta_sum s)
def ¢ := classical.some riemann_zeta_exists

—— (s # 1) implicit in the domain constraints:
def riemann_hypothesis :=

(V s, T(s) = 0 A =(riemann_zeta_trivial_zero s) -
re (s) = 1/2)



Aise Johan de Jong

[ The Stacks Project

home about tagsexplained taglookup browse search Dbibliography recent comments

The Stacks project started in 2005. The initial idea was for it to be a collaborative web-based project
with the aim of writing an introductory text about algebraic stacks. Temporarily there was a mailing
list and some discussion as to how to proceed. For example, there are issues with referencing such a
document, how to distribute credit, who does what, and many more. Although we have definite ideas
about most of these points we would like to take a more positive approach. Namely, to simply create
something and solve problems and answer questions as they come up.

We do want to answer a few basic questions that the casual visitor may have about this project:

1. The Stacks project is no longer an introductory text, but aims to build ug
geometry as foundations for algebraic stacks. This implies a good deal o
algebra, schemes, varieties, algebraic spaces, has to be developed en ro ,

2. The Stacks project has a maintainer (currently Aise Johan de Jong) who 4 fgggi""essgf.wds t
proposed by contributors. Although everyone is encouraged to participg _ ,,, SSeifiZ:]s nactive tags)

3. The Stacks project is meant to be read online, and therefore we do noty . 149 chapters
chapters, etc. Moreover, with hyperlinks it is possible to quickly browse | . 6214 pages
find the lemmas, theorems, etc. that a given result depends on. > 186 slogans

Statistics

The Stacks project now consists of




® @ https://stacks.math.columbia.edu/tag/009L v B | e @ v | Q Search

"_—-E,I The Stacks prOjECt bibliography blog Q keywords or a tag

Table of contents / Part 1: Preliminaries / Chapter 6: Sheaves on Spaces / Section 6.30: Bases and sheaves / Lemma 6.30.4 (cite)

Lemma 6.30.4. Let X be a topological space. Let 3 be a basis for the topology on X. Assume that
for every pairU, U’ € B wehaveU N U’ € B. ForeachU € B, let C(U) c Covg(U) be a co-
final system. Let F be a presheaf of sets on IB. The following are equivalent

« previous lemma next lemma »

numbers
(1) The presheaf F is a sheaf on BB.

(2) For every U € B and every coveringU" : U = |J U; in C(U) and for every family of sec- View Lemma 6.30.4 as pdf >
tions s; € F(U;) such that si|yny, = Sjlunu, there exists a unique section s € F(U)

which restricts to s; on U;. ® history

Proof. This is a reformulation of Lemma 6.30.3 above in the special case where the coverings U} |l statistics
each consist of a single element. But also this case is much easier and is an easy exercise to do di-
rectly. ]

Comments (0)

There are also:

e 6 comment(s) on Section 6.30: Bases and sheaves

Post a comment



Stacks project in Lean

structure scheme :=
(a : Type u)
(T : topological_space a)
(0_X : presheaf_of_rings a)
(0_X_sheaf : is_sheaf_of_rings 0_X)
(locally_affine : 3 B : Type v, 3 cov : B - {U : set a // T.is_open U},
set.Union (A b, (cov b).val) = set.univ A
Vb:B, 3R : Typex, 3 RR : comm_ring R, 3 fR : (X R) - q,
fR '' set.univ = (cov b).val A — thanks Johan Commelin!!
open_immersion fR A N H : open_immersion fR,
are_isomorphic_presheaves_of_rings
(presheaf_of_rings_pullback_under_open_immersion 0_X fR H)
(structure_presheaf_of_rings_on_affine_scheme R)



Kevin Buzzard

definition scheme_of_affine_scheme (R : Type u) [comm_ring R] : scheme :=

{ a := XR,
T := by apply_instance,
0_X := zariski.structure_presheaf_of_rings R,
0_X_sheaf := zariski.structure_presheaf_is_sheaf_of_rings R,

locally_affine := begin
existsi (punit : Type u),
existsi (A _, set.univ),
existsi (A _, is_open_univ),
split,
{ intro x,
existsi punit.star,
trivial },
intro _,
existsi R,
existsi _,tactic.swap,apply_instance,
existsi id,
split,
{ apply set.eq_univ_of_forall,
intro x, existsi x, refl },
existsi topological_space.open_immersion_id _,
—— are_isomorphic_presheaves_of_rings
—— (presheaf_of_rings_pullback_under_open_immersion (zariski.structure_presheaf_of_rings R) id H)
—— (zariski.structure_presheaf_of_rings R)

—— WAIT A MINUTE ISN'T THIS OBVIOUS



. | Kevin Buzzard
® @& GitHub, Inc. (US) ‘ https://github.com/kbuzzard/lean-stacks-{

Tree: 6617de7dd5 v lean-stacks-project / src / tagO09L.lean

2 kbuzzard moving compactness of basis elts to 04PM

1 contributor

179 lines (172 sloc) 6.48 KB

/- The lemma in this tag says that if we have a top space
and a basis with the property that the intersection of two
basis elements is in the basis, then to give a sheaf on B
is to give a "sheaf on a cofinal system of covers of B".
In the application to schemes, this means a presheaf with
the property that it satisfies the sheaf axiom for

finite covers of basic opens by basic opens, noting that
the intersection of two basis opens is a basic open.

-/

import tag@@9]

universe u
—— A "standard" basis —— I just mean intersection of two basic opens is basic open.
—— Makes the sheaf axiom easier, and is satisfied in the case of Spec of a ring.
—— Below is the statement of the sheaf axiom for a given open cover in this case.
definition sheaf_property_for_standard_basis

{X : Type u} [T : topological_space X]

{B : set (set X)}

(HB : topological_space.is_topological_basis B)

(FPTB : presheaf_of_types_on_basis HB)

(Hstandard : ¥V {UV : set X}, BU-BV ->B (UnV))

(U : set X)

(BU : B U)



Local Langlands Correspondence inthe Abelian Case

Kenny Lau

Kenny Lau

Imperial College
London

In Algebraic Geometry, a torus is an affine algebraic group 7" over a
field F' such that there is a finite Galois extension K of F' with the
property that 7' x p Spec(K) is isomorphic to Spec(K[Z"]) for some n
as affine algebraic groups. In that case, we call 7" an F'-torus that splits
over K. If K = F, we call it a split torus.

Here are some objects associated to 7":
1. X*(T) := Homg.gs(Tx,GL1), its character group;
2. X, (T) := Homg.gs(GL1,Tk), its cocharacter group;
3. T := Homap(X.(T),C*);
4. LT := T x Gal(K/F), its Langlands dual

where:
e GL; := Spec(K|[Z]);
e K-GS is the category of group schemes over K

Note that the Langlands dual is a topological group, since 7' is a finite
product of copies of C*, and so T is a finite union of copies of T'.

If F is a non-archimedean local field, fix an algebraic closure F of F.
The Weil group W5 - is defined to be:

{0 € Gal(F/F) : o|pur = Frob”® for some k € Z}

where F*" is the maximal unramified extension of F' and Frob is
Frobenius map. Local class field theory says that W%’; p = F canon-

ically. If K is a finite Galois extension of F, then W5, is a normal
subgroup of W 1, since they fit in this short exact sequence:

1 —— Wg g —— Wg/p — Gal(K/F) —— 1

Then, we define the relative Weil group Wy r = W, p/W5 K
where WZ K denotes the closure of the commutator of Wz, ;.. We

have this short exact sequence:

1 /4 KX

s Wi/p — Gal(K/F) —— 1

Similar groups can be constructed for the two archimedean local fields
based on the last short exact sequence.

Let us consider the simplest case, i.e. the case where the torus is just
GL,, i.e. Spec(F[Z]). This torus is split, and Wg/p = F* acts on
T = C* trivially, and T(F) is just F*. Since the action is trivial, co-
homological classes are just group homomorphisms, so the theorem is
verified since both sides are the same. The actual content in this case is
actually the fact that Wr,r = F*, which is the main theorem of local
class field theory. Therefore, local Langlands Correspondence for GL;
is just local class field theory.

The theorem states that for any local field F, finite galois extension K,
T an F-torus that splits over K, there is a canonical bijection:

HY(Wi)p,T) — Homropcrp(T(F),C*)
where:
e TopGrp is the category of topological groups;
e T'(F) is the F-points of the torus T

Langlands is interested in representations of affine algebraic groups in
general, GL,, in particular, not just for tori. However, since a torus is
isomorphic to (GL1)™ after a base change, it becomes a slight general-
ization of local class field theory (see above), a stepping stone for the
greater Langlands correspondence. Langlands wants to parametrize
the representations (i.e. the right hand side of the bijection) by repre-
sentations of the Weil group onto the Langlands dual. Note that we
are only interested in one-dimensional representations since all irre-
ducible representations of T'(F') is one-dimensional.

Statement and Motivation of Theorem

The torus everyone is familiar with is (S')? where S' C R? is the
unit circle. We shall build the correspondent torus in the algebraic
geometry land.

Classically, S = {(z,y) € R? | 22 + y? = 1}, so we can build an affine
R-scheme whose R-points is S!, namely Spec(R[X,Y]/(X?+Y?—1)),
which we call S! from now on. R-product of affine schemes corre-
spond to R-tensor product of the coordinate rings, so we get (S*)? =
Spec(R[X,Y, Z, W]/(X? +Y? - 1,W? + Z% — 1)).

To see that it is actually an torus, note that the scheme after base
change to C is just Spec(C[Z?]), identifying X + Y with (1,0), X — iV
\with (—1,0), Z + iW with (0,1), and Z — iW with (0, —1).

We consider continuous group homomorphisms ¢ making the dia-
gram commute:

1 —— Wgp —— Wgp — Gal(K/F) —— 1

E lm

» LT » Gal(K/F) —— 1

~

1 > T

We obtain a homomorphism ¢’ : W, — T in the second column.
The codomain is abelian, so ker ¢’ C W2 K This gives a homomor-
phism ¢* : Wy p — ET. Viewing the underlying set of “T" as a carte-
sian product, the second coordinate of ¢*(o) is determined by o, so
we can focus on the first coordinate, i.e. 71 0 ¢* : Wi p — T. This is
not a group homomorphism, but a crossed homomorphism, i.e. a 1-
cocycle. The isomorphism classes of such ¢ correspond to continuous

cohomology classes of degree 1, denoted H} (W /r,T).

I formalized the important parts and the fundamental parts of the
statement of this theorem in Lean, a proof assistant. My Github
repo is located at: https://github.com/kckennylau/local-
langlands—abelian.

Here is a list of the files in my repo as of June 18:
Weil_group.lean,abelianization.lean,algebra.lean,
algebra_tensor.lean, field_extensions.lean,
group_cohomology.lean, monoid_ring.lean,
polynomial.lean, quotient_group.lean, statement.lean,
tensor_product.lean, topological_group.lean,
torus.lean.

There is currently 3102 lines in the repo.

The statement of the theorem becomes:

Hlc (relative_Weil_group F AC W ht.split)
(torus.hat F AC T ht) =~ topological_group_hom
\(torus.rat_pt F AC T ht) (units C)

[1] K.Buzzard. Trivial Remarks About Tori. accessed June 8 2018
http://wwwf.imperial.ac.uk/~buzzard/maths/research/notes/
trivial_remarks_about_tori.pdf

[2] J.S. Milne. Basic Theory of Affine Group Schemes. 2012

\[3] J. Tate. Number Theoretic Background. 1979




We consider continuous group homomorphisms ¢ making the dia-
gram commute:

1 — Wi/ — Wg/p — Gal(K/F) —— 1

E lid

1] — T —— L7 — Gal(K/F) —— 1

We obtain a homomorphism ¢’ : Wg, ;o — T in the second column.

The codomain is abelian, so ker ¢’ C W= K
phism ¢* : Wi, — “T. Viewing the underlying set of »T" as a carte-
sian product, the second coordinate of ¢*(o) is determined by o, so
we can focus on the first coordinate, i.e. m 0 p* : Wy ,p — T. This is
not a group homomorphism, but a crossed homomorphism, i.e. a 1-

cocycle. The isomorphism classes of such ¢ correspond to continuous
cohomology classes of degree 1, denoted H} (W, p,T).

This gives a homomor-

I formalized the important parts and the fundamental parts of the
statement of this theorem in Lean, a proof assistant. My Github
repo is located at: https://github.com/kckennylau/local-
langlands—-abelian.



Other Lean Sessions
ICMS

Wed 15:30 Mario Carneiro: Lean 3 Mathematical Library

Wed 15:55 Rob Lewis: Interface between Lean and Mathematica




Hypergame Paradox

(Zwicker 1987)

Some games necessarily end after a
finite number of moves: (chess, tic-tac-
toe, go).

Other games might continue forever
(rock-paper-scissors played until
somebody is up by five).

Hypergame:
 first move: pick any game that
necessarily ends after finitely many

MOVES

* remaining moves: play the game that
was picked.

Hypergame necessarily ends after
finitely many moves.




Hypergame Paradox

(Zwicker 1987)

@Tr) * Hypergame:

* first move: pick any game that
necessarily ends after finitely
many moves

* remaining moves: play the game
that was picked.

HENE
‘ '  Hypergame necessarily ends after
D I H I D finitely many moves.
e But hypergame does not
necessarily end after finitely many

moves. What if the first move picks
hypergame, and the second, etc.?




universe u

structure game : Type u := VerSiOﬂ 1
(states : Type u)

(legal : states - states - Prop)
10 (terminal : states - Prop)

O 00 N O U

11 (terminal_stable : V x y, terminal x - legal x y -» terminal vy)

12

13 #check game

14

PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL {5 g A

4 hypergame.lean src

@ [Lean] universe level of type_of(arg #1) of 'game.mk’ is too big for the corresponding inductive datatype (7, 1)
5 universe u
6 ;
7 structure game : Type (u+1)| = VeI’SIOﬂ 2
8 (states : Type u)
9 (legal : states - states - Prop)
10 (terminal : states - Prop)
11 (terminal_stable : V x y, terminal x -» legal x y -» terminal y)
12
13 #check game
14
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL -ré a A [1

Credit: Earlier formal analysis of hypergame was made by Krebbers.
hypergame.lean src

P P - - - - ro— P - -



universe u

class finite_game : Type (u+l) :=

(states : Type u)

(legal : states - states - Prop)
(terminal : states - Prop)

(terminal_absorbent :

V x y, terminal x -» legal x y » terminal y)

(finite: V (f : N - states), (Vv n, legal (f n) (f (n+1)) - 3 m, terminal (f m)))

instance hypergame : finite_game :=

-1 {
states := option
legal := sorry,
terminal := sorry,
terminal_absorbent
finite := sorry

(£ (G : finite_game), G.states),

1= sorry,



Hypergame In Lean

\I’
* The hypergame has universe

level one greater than the {IT'J

games it plays from. \2

| HENE

* Each choice of hypergame as

the tirst move of hypergame {IT')

drops the universe level by

one. \"
e At the lowest universe level, DHD

only ordinary games are
available, and the hypergame
necessarily ends after finitely
many mMoves.



The technology has reached maturity. Major projects involving
hundreds of thousands of lines of computer code have been
completed. Here are the big four :

» Sel4: the formal verification of the microkernel of an
operating system;
» CompCert: the formal verification of a C compiler;

» Feit-Thompson Odd Order Theorem: the formal verification
of a major result in finite group theory:;

» the formal verification of the proof of the sphere packing
problem (the Kepler conjecture) in three dimensional
Euclidean space.



Formal Abstracts in Mathematics
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A concrete proposal: mathematical FABSTRACTS
(formal abstracts)

Given today’s technology, it 1s not reasonable to ask for all
proofs to be formalized. But with today’s technology, it seems
that it should be possible to create a formal abstract service
that

e (ives a statement of the main theorem(s) of each
published mathematical paper in a language that is both
human and machine readable,

e Links each term in theorem statements to a precise

definition of that term (again in human/machine readable
form), and

e Grounds every statement and definition is the system in
some foundational system for doing mathematics.

Wednesday, January 6, 2016



Capturing Definitions

The definitions of mathematics

The Oxford English dictionary (2nd edition) has 273,000
headwords and over 600,000 word forms. (The longest entry
1s for the word set, which continues for 25 pages).

Medicine has a specialized terminology of approximately
250,000 1tems [Kucharz].

The Math Subject Classification (MSC) lists over 6000
subfields of mathematics.



Capturing Definitions

® & https://en.wikipedia.org/wiki/Normal eee @ | | Q Search v oIN @

What is normal in math?

There are many unrelated notions of "normality" in mathematics.

Algebra and number theory [ edit source ]

Normal basis (of a Galois extension), used heavily in cryptography

Normal degree, a rational curve on a surface that meets certain conditions

Normal domain (integrally closed domain), a ring integrally closed in its fraction field

e Normal ring, a reduced ring whose localizations at prime ideals are integrally closed domains
e Normal scheme, an algebraic variety or scheme that meets certain conditions

Normal extensions (or quasi-Galois) field extensions, splitting fields for a set of polynomials over the base field

Normal variety, a projective variety embedded by a complete linear system, as in a rational normal scroll (unrelated to the
concept of normal scheme above)
Normal order of an arithmetic function, a type of asymptotic behavior useful in number theory

Normal subgroup, a subgroup invariant under conjugation

Analysis [ edit source |

o Normal family, a pre-compact family of continuous functions

e Normal number, a real number with a "uniform" distribution of digits

e Normal number (computing), a floating-point number within the balanced range supported by a given format (unrelated to the
previous notion)

o Normal operator, an operator that commutes with its Hermitian adjoint

o Normal matrix, a complex square matrix that meets certain conditions
e Normal modes of vibration in an oscillating system



Capturing Definitions

Geometry | edit source ]

e Normal (geometry), a vector perpendicular to a surface (normal vector)

Normal bundle, a term related to the preceding concept

Normal cone, of a subscheme in algebraic geometry

Normal coordinates, in differential geometry, local coordinates obtained from the exponential map (Riemannian geometry)

Normal invariants, in geometric topology

Normal polytopes, in polyhedral geometry and computational commutative algebra
Normal space (or T} ) spaces, topological spaces characterized by separation of closed sets

Logic and foundations | edit source ]

e Normal function, in set theory
e Normal measure, in set theory

Mathematical physics | edit source ]

e Normal order or Wick order in Quantum Field Theory

Probability and statistics [ edit source ]

o Normal, the middle 95% of a bell curve (see 1.96)
o Normal distribution, the Gaussian continuous probability distribution

Other mathematics | edit source |

e Normal form (disambiguation)
e Normalization (disambiguation)



Capturing Definitions

WIREIRERERe|eIF[e¥d  Definitions of group (algebra)

e A group is a set with a binary operation, identity element,
and inverse operation, satisfying axioms of associativity,
inverse, and identity.

e A group object in a category. A group in the first sense is
a group object in the category of sets. A Lie group is a
group object in the category of smooth manifolds. A
topological group is a group object in the category of
topological spaces. An affine group scheme is a group
object in the category of affine schemes. (Caution: the
Zariski product topology is not the product topology.)

e A Poisson-Lie group a group object in the category of
Poisson manifolds, except that the inverse operation 1s
not required to be a morphism of Poisson manifolds. (In



What is a group?

general, the inverse 1s an anti-Poisson morphism.)

A quantum group is an object in the opposite category to
the category of Hopf algebras.

A compact matrix quantum group is a C'*-algebra with
additional structure (Woronowicz).

A strict 2-group is a group object in the category of
categories (or a category object in the category of

groups).
A 2-group ...

An n-group ...

Capturing Definitions



Formalizing statements of theorems

Project: give formal abstracts for next week’s Fields medals.

Popular candidates for next week’s Fields medal, according to
https:
//poll.pollcode.com/44839318_result?v

e Peter Scholze 1246 votes

e Fernando Coda Marques 946 votes
e Alesso Figalli 592 votes

e Geordie Williamson 422 votes

e Ciprian Manolescu 441 votes

e Simon Brendle 372 votes

e Maryna Viazovska 326 votes

How difficult are formal abstracts of their main theorems?



Scholze - perfectoid spaces. There has been a discussion led
by Kevin Buzzard about putting this work into the Lean
theorem prover.

Michael Harris, “the concept of a perfectoid space i1s one of
the most difficult notions ever introduced in arithmetic
geometry, which has a long tradition of difficult notions.”

Fix a prime number p. A perfectoid field K 1s a complete
non-archimedean field with residue characteristic p such that
the value group of K™ in R+ ¢ 1s not discrete, and such that the
Frobenius (p-power) map

K°/p— K°/p

is surjective, where K° = {x € K | |z| < 1} is the ring of
integers of K.



Marques: The Willmore energy of a torus immersed in R? is
at least 272

(wiki) Let v : M — R? be a smooth immersion of a compact
orientable surface, and give M a Riemannian metric from this
immersion. Let H : M — R be the mean curvature (the
arithmetic mean of the principal curvatures x; and - at each
point). The Willmore energy is given by

W(M) = /M H? dA.

Figall Figalli - ?? - Improved versions of this and that in optimal
transport.



Williamson - algebraic proot of the Kazhdan-Lusztig

Conj ectures.
SDJE Combinatorics » Comprehensive Module list » previous | next | modules | index
Previous topic Kazhdan-Lusztig Polynomials
Strong and weak tableaux
Next topic AUTHORS:
Knutson-Tao Puzzles « Daniel Bump (2008): initial version
This Page e Alan J.X. Guo (2014-03-18): r_tilde() method.
Show Source class sage.combinat.kazhdan lusztig. KazhdanLusztigPolynomial( W, q, trace:FaIse)
Quick search Bases: sage.structure.unique_representation.UniqueRepresentation,
sage.structure.sage_object.SageObject
LD A Kazhdan-Lusztig polynomial.
Enter search terms or a module,
class or function name. INPUT:
e w—a Weyl Group
e g— an indeterminate




Manolescu

Viazovska

Manolescu - non-triangulable manifolds exist in any

dimension greater than four.

A triangulation is a homeomorphism with the geometric
realization of a simplicial complex.

Brendle - sphere theorem strengthened to differentiable
sphere theorem: If M 1s a complete, simply-connected,
n-dimensional Riemannian manifold with sectional curvature
taking values in the interval (1, 4] then M is homeomorphic
(and in fact, diffeomorphic) to the n-sphere.

Viazovska - No packing of congruent balls in
eight-dimensional Euclidean space has density greater than
the Fg packing.



Why?

e bring the benefits of proof assistants to the general
mathematical community;

e set standards for the sciences;

e sct the stage for applications to ML in mathematical
proofs;

e move math closer to the computer.
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