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• Reference on the area up to 2005:

• A.J. Sommese and C.W. Wampler, Numerical solution of systems of 
polynomials arising in engineering and science, (2005), World 
Scientific Press.

• Survey up to 2010 oriented towards Kinematics

• C.W. Wampler and A.J. Sommese, Numerical Algebraic Geometry and 
Algebraic Kinematics, Acta Numerica 20 (2011), 469-567.

• Up to 2013 oriented towards Bertini

• D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, 
Numerically solving polynomial systems with Bertini, (2013), SIAM.

• Developments related to systems of PDEs upto 2013

• W. Hao, B. Hu, and A.J. Sommese, Numerical algebraic geometry and 
differential equations, in Future Vision and Trends on Shapes, Geometry 
and Algebra, ed. by R. De Amicis and G. Conti, Springer Proc. in 
Mathematics & Statistics, Vol. 84 (2014), 39-54.

Surveys of Numerical Algebraic Geometry
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Numerical algebraic geometry grew out of

• Continuation methods for computing isolated solutions 

of polynomial systems

• Classical methods to studying a positive dimensional 

algebraic sets by studying the slices of the set.
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Computing Isolated Solutions of Polynomials Systems

Find all solutions of a polynomial system on        :
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Why?

To  solve problems from engineering and science. 
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• systems are sparse: they often have symmetries and 

have much smaller solution sets than would be 

expected.

Characteristics of Engineering Systems
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• systems are sparse: they often have symmetries and 

have much smaller solution sets than would be 

expected.

• systems depend on parameters: typically they need 

to be solved many times for different values of the 

parameters.

• usually only real solutions are interesting.

• usually only finite solutions are interesting.

• nonsingular isolated solutions were the center of 

attention.

Characteristics of Engineering Systems
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Homotopy continuation is our main tool: 

Start with known solutions of a known start system 

and then track those solutions as we deform the start 

system into the system that we wish to solve.
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This method takes a system g(x) = 0, whose solutions 

we know, and makes use of a homotopy, e.g., 

Hopefully, H(x,t) defines “paths” x(t) as t runs 

from 1 to 0.  They start at known solutions of 

g(x) = 0 and end at the solutions of f(x) at t = 0.

Path Tracking

tg(x). t)f(x)-(1  t)H(x, 
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The paths satisfy the Davidenko equation
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To compute the paths: use ODE methods to 

predict and Newton’s method to correct.
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x3(t)

x1(t)
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x4(t)

Solutions of  

f(x)=0

Known solutions 

of g(x)=0
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Some Remarks

• A Market Inefficiency in the mid 80’s

• Numerical versus symbolic methods

Numerical methods are inherently uncertain

The cost of certainty is not having answers
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Uses of algebraic geometry

Simple but extremely useful consequence of 
algebraicity [A. Morgan (GM R. & D.) and S.]

• Instead of the homotopy H(x,t) = (1-t)f(x) + tg(x) 

use H(x,t) = (1-t)f(x) + gtg(x)
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• Morgan + S. : if the parameter space is irreducible, solving the 
system at a random points simplifies subsequent solves: in 
practice speedups by factors of 100.

• A. Morgan and A.J. Sommese, Coefficient-parameter polynomial 
continuation, Appl. Math. Comput.  29 (1989), 123-160.

• A related approach

• T.Y. Li, T. Sauer, Tim, and J.A. Yorke, The cheater's homotopy: an 
efficient procedure for solving systems of polynomial equations, SIAM 
J. Numer. Anal. 26 (1989), 1241-1251.

Genericity
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First Major Use of the Methodology

• Kinematics Problem Posed in 1923 by Alt and solved in 1992.

• C.W. Wampler,  A. Morgan, and A.J. Sommese, Complete solution 
of the nine-point path synthesis problem for four-bar linkages, 
ASME Journal of Mechanical Design 114 (1992), 153-159.

Timings + Cleverness



Polynomials, Kinematics, and Robotics June 5, 2017 20

Solve by Continuation

All 2-homog.

systems

All 9-point

systems

“numerical reduction” to test case (done 1 time)

synthesis program (many times)
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Alt’s System

in the 24 variables

with j from 1 to 8.

    0δδ - x) -a (δ )x̂ - â(δγ̂ x̂)δ -(a  γ)xδ - â( jjjjjjjj 

    0δδ -  y)- b(δ )ŷ - b̂(δγ̂ ŷ)δ - (b γ)yδ - b̂( jjjjjjjj 

0γ̂γγ̂γ jjjj 

jj γ̂, γand ŷ ,x̂ ,b̂ ,â  y,x, b, ,a
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• 8 degree 2 and 16 degree 3 equations giving 
11,019,960,801 paths to follow.

• Freudenstein and Roth (early 50’s): use Cramers rule 

and substitution on the g variables, we have a system 
consisting of 8 equations of degree 7. In 1991, this was 
impractical to solve:  78 = 5,764,801solutions.
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Nine-point Problem
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A point to consider

• Not all limits of paths are equal!  Singular paths can 
be much more expensive and difficult to compute.

Difficult means: impossible? Impractical? 10x more expensive?, 100x 

more expensive?
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Endgames (Morgan, S., and Wampler)

• Example: (x – 1)2 - t = 0

We can uniformize around 

a solution at t = 0.  Letting

t = s2, knowing the solution

at t = 0.01, we can track

around |s| = 0.1 and use

Cauchy’s Integral Theorem 

to compute x at s = 0.
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Continuation’s Core Computation - THEN

• Given a system f(x) = 0 of n polynomials in n 
unknowns, continuation computes a finite set 
S of solutions such that:
• any isolated root of f(x) = 0 is contained in S; 

• any isolated root “occurs” a number of times 
equal to its multiplicity as a solution of f(x) = 0;

• S is often larger than the set of isolated solutions.
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A Guiding Principle 

Use Special Homotopies to take advantage of 
sparseness (not all endpoints are created equal).

• Algorithms must be structured – when possible – to 
avoid paths leading to singular solutions: find a way 
to never follow the paths in the first place.



Moment Map



Sparse system treated as nonsparse



Often high multiplicity solutions at infinity
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Multihomogeneity (cites)
• A. Morgan and A.J. Sommese, A homotopy for solving general polynomial systems that respects 

m-homogeneous structures, Applied Math. and Comput. 24 (1987), 101-113.

Staying on the parameter space in question
• A. Morgan and A.J. Sommese, Coefficient-parameter polynomial continuation, Applied Math. 

Comput.  29 (1989), 123-160.

Linear Product Structure

• J. Verschelde, and R. Cools, Symbolic homotopy construction, Applied Algebra in Engineering 

Communication and Computing, 4 (1993), 169-183.

Product Decomposition
• A. Morgan, A.J. Sommese, and C.W. Wampler, A product-decomposition bound for Bezout

numbers, SIAM Journal on Numerical Analysis 32 (1995), 1308-1325.

Polyhedral Structure
• T.Y. Li, Numerical solution of polynomial systems by homotopy continuation methods, in 

Handbook of Numerical Analysis, Volume XI, 209-304,  North-Holland, 2003.

Using Special Structure to avoid bad paths
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The current best approach for large systems: Equation-

by-Equation Methods

• A.J. Sommese, J. Verschelde, and C.W. Wampler, Solving polynomial systems 

equation by equation, In Algorithms in Algebraic Geometry, edited by A. 

Dickenstein, F.-O. Schreyer, and A.J. Sommese, vol. 146 of IMA Volumes in 

Mathematics and Its Applications, 133-152, 2007, Springer Verlag.

• J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, Regeneration homotopies for 

solving systems of polynomials,  Mathematics of Computation, 80 (2011) 345-377.
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Predator-Prey System

n = 5 (40 equations & 40 variables): < 80 min. with 
200 cores (25 dual Xeon 5410 nodes)
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The Core Numerical Computation - NOW

• Realization slowly grew that path crossing is 
unacceptable and that the core numerical 
computation of Numerical Algebraic Geometry is:

• Given a homotopy H(x;q) = 0; a “good” path q(t) in the 
q-variables defined on (0,1]; and a point x* satisfying 
H(x*;q(1))=0, compute the limit as t goes to 0 of the path 
(x(t);q(t)) starting with (x(1) ;q(1) =  (x*;q(1)) in the 
(x;q) space and satisfying H(x(t);q(t)) = 0.

In a nutshell: 

We need to compute the endpoint of a path!
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Path-Crossing is dire in modern algorithms!
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Multiprecision

• Not practical in the early 90’s!

• Highly nontrivial to design and dependent on 
hardware

• Hardware too slow
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The need for multiprecision

• Why use Multiprecision?

• Path-crossing is dire in modern algorithms!

• to ensure that the region where an endgame works is not 
contained in the region where the numerics break down; 

• to ensure that a polynomial evaluating to zero at a point is the 
same as the polynomial numerically being approximately zero 
at the point;

• To make sure that the consequences of genericity really hold;

• to prevent the linear algebra in continuation from falling apart.
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Endgames (Morgan, S., and Wampler)

• Example: (x – 1)2 - t = 0

We can uniformize around 

a solution at t = 0.  Letting

t = s2, knowing the solution

at t = 0.01, we can track

around |s| = 0.1 and use

Cauchy’s Integral Theorem 

to compute x at s = 0.
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Endgames - NOW

•Singular solutions not a side issue, but the main object! 

For certain classes of systems of hyperbolic PDEs and 
solutions with discontinuities, the Cauchy endgame gives 
an order of magnitude improvement over the standard 
time-stepping method.

• W. Hao, J.D. Hauenstein, C.-W. Shu, A.J. Sommese, Z. Xu, Y.-T. 
Zhang, A homotopy method based on WENO schemes for solving 
steady state problems of hyperbolic conservation laws,  J. of Comp. 
Phys., 250 (2013), 332-346.
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Evaluation

p(z) = z10 – 28z9 + 1

• To 15 digits of accuracy one of the roots of this polynomial is a = 
27.9999999999999. Evaluating p(a) term-by-term to 15 digits, we 
find that p(a) = -2

(or, evaluating intelligently p(a) = -0.05784559534077: this uses 

understanding we do not have in higher dimensions).

• Even with 17 digit accuracy, the approximate root a is a = 
27.999999999999905 and we still only have p(a) = -0.01 (or with 

intelligence: p(a) = -0.0049533155737293).
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“Genericity” isn’t possible with only double precision

Near-singular conditions actually arise.  For the current 
best polynomial system to solve Alt’s problem:

• For the nine-point problem, out of 143,360 paths:
• 1184 paths (0.826%) used higher precision and then dropped 

back to double precision before starting the endgame

• 680 paths (0.474%) used at least 96-bit precision and then 
dropped back to double precision before starting the endgame
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Double precision not enough even at nice solutions!

High condition numbers of        to         occur at nice solutions of 
discretizations of many systems of differential equations, e.g.,
• W. Hao, J.D. Hauenstein, B. Hu,Y. Liu, A.J. Sommese, and Y.-T. Zhang, 

Continuation along bifurcation branches for a tumor model with a 
necrotic core, J. Sci. Comp., 53 (2012), 395-413.

• W. Hao, J.D. Hauenstein, B. Hu, T. McCoy,and A.J. Sommese, 
Computing steady-state solutions for a free boundary problem modeling 
tumor growth by Stokes equation, J. Comp. and Appl. Math., 237 
(2013), 326-334.

• W. Hao, B. Hu, and A.J. Sommese, Cell cycle control and bifurcation 
for a free boundary problem modeling tissue growth,  J. Sci. Comp., 56 
(2013), 350-365.

710
910
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Double precison versus Higher Precision
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Bertini
•Bertini is designed to

• Be efficient and robust, e.g., straightline evaluation, 
numerics with careful error control

• With data structures reflecting the underlying 
geometry

• Take advantage of parallel hardware

• To dynamically adjust the precision to achieve a 
solution with a prespecified error  

• scripting
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Using Higher Precision

• One approach is to simply run paths at a higher precision.

This is computationally very expensive!

From D.J. Bates, J.D. Hauenstein, A.J. Sommese,  and 

C.W. Wampler, Adaptive multiprecision path tracking,

SIAM Journal on Numerical Analysis 46 (2008) 722-746.
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• The theory we use was presented in the article

• D. Bates, J.D. Hauenstein, S., and W., Multiprecision
path tracking, Adaptive multiprecision path tracking, 
SIAM Journal on Numerical Analysis 46 (2008) 722 -
746.
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Positive Dimensional Solution Sets

We now turn to finding the positive dimensional solution 
sets of a system
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How to represent positive dimensional components?

•S. + Wampler in ’95: 
• Use the intersection of a component with generic linear 

space of complementary dimension.  

• By using continuation and deforming the linear space, as 
many points as are desired can be chosen on a component.

In the article “Numerical algebraic geometry, in The Mathematics of 
NumericalAnalysis, Park City, Utah, Summer 1995, ed. by J. 
Renegar, M. Shub, and S. Smale, Lectures in Applied Math. 32 
(1996), 749-763.”
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S., Verschelde, and Wampler

• Use a generic flag of 
affine linear spaces

• to get witness point 
supersets

• This approach has 19th

century roots in 
algebraic geometry
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The Numerical Irreducible Decomposition

Carried out by S., Verschelde, and Wampler in a sequence of articles 

• Numerical Irreducible Decomposition

• SIAM Journal on Numerical Analysis, 38 (2001), 2022-2046.

• An efficient algorithm (with verification) using monodromy

• SIAM Journal on Numerical Analysis 40 (2002), 2026-2046.

• Intersections of algebraic sets

• SIAM Journal on Numerical Analysis 42 (2004), 1552-1571.

• A local dimension test letting us deal with a single dimension

• J.D. Hauenstein, C. Peterson, and A.J. Sommese, SIAM Journal on 
Numerical Analysis, 47 (2009), 3608-3623.



Polynomials, Kinematics, and Robotics June 5, 2017 51

The Irreducible Decomposition
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Witness Point Sets
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Deflation

The basic idea introduced by Ojika in 1983 is to differentiate the multiplicity 
away. 

• A. Leykin, J. Verschelde, and A. Zhao (Newton's method with deflation for isolated 
singularities of polynomial systems, Theoret. Comput. Sci., 359 (2006),111–122) gave 
an algorithm for an isolated point that they showed terminated.  

Given a system f, replace it with 

Repeat as necessary.

0

bzA

zJf(x)

f(x)
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This led to much work and improvement by many mathematicians.  One 

very important development in understanding this and how to compute 

multiplicities is

• B.H. Dayton and Z. Zeng, Computing the multiplicity structure in solving polynomial 

systems, ISSAC'05, 116-123, ACM, New York, 2005.

See also 

• B.H. Dayton, T.-Y. Li, and Z. Zeng, Multiple zeros of nonlinear systems, Math. Comp. 

80 (2011), 2143-2168.
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The best current approach for dealing with nonreduced

components is given by

• J.D. Hauenstein and C.W. Wampler, Isosingular sets and deflation, Found. of Comput. 

Math., 13 (2013), 371-403.

A related article

• J.D. Hauenstein and C.W. Wampler, Numerically intersecting algebraic varieties via 

witness sets, Appl. Math. and Comp.,  (2013), 5730-5742. 

is used to complete the process of computing the numerical irreducible 

decomposition of intersections by producing the witness systems for the 

witness sets.
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Real algebraic sets 

There is an extensive literature on algebraic methods:

• S. Basu, R. Pollack, and M.-F. Roy, Algorithms in real algebraic geometry, Second edition, 

Algorithms and Computation in Mathematics, 10. Springer-Verlag, Berlin, 2006.
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Numerical approach
Curves:
• Y. Lu, D.J. Bates, A.J. Sommese,  and C.W. Wampler, Finding all real points of a complex curve, In  

Algebra, Geometry and Their Interactions, edited by A. Corso, J. Migliore, and C. Polini, Cont. Math.  

448 (2007), 183-205, American Mathematics Society.

Real surfaces:
• G.M. Besana, S. Di Rocco, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, Cell decomposition of 

almost smooth real algebraic surfaces, Numerical Algorithms, 63(2013), 645-678.

Implemented in Bertini_real:
• D.A. Brake, D.J. Bates, W. Hao, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, Bertini_real: 

Numerical decomposition of real algebraic curves and surfaces, ACM Trans. on Math. Software, to 

appear. 

Related:
• The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 4.10 edition, 2017.

• Work of Bernhard Mourrain and his group
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Algebraic Geometry Computations

• D.J. Bates, W. Decker,  J.D. Hauenstein, C. Peterson, G. Pfister, 
F.-O. Schreyer, A.J. Sommese, and C.W. Wampler, Probabilistic 
algorithms to analyze the components of an affine algebraic 
variety, Applied Mathematics and Computation,  231 (2014),  619-
633.

• Many papers by Bates, Brake, Dayton, Hauenstein, Leykin, Li, 
Oeding, Ottaviani, Peterson, Rodriguez, Sommese, Sottile, 
Sturmfels, Verschelde, Wampler, Zeng, . . . 
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Questions?
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Happy Birthday Charles!


