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Anderson Acceleration

Motivation

Anderson Acceleration Algorithm

Solve fixed point problems

u = G(u)

faster than Picard iteration

uk+1 = G(uk).

Motivation (Anderson 1965) SCF iteration in electronic structure
computations.
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Anderson Acceleration

Motivation

Why not Newton?

Newton’s method

uk+1 = uk − (I− G′(uk))−1(uk − G(uk))

converges faster,

does not require that G be a contraction,

needs G′(u) or G′(u)w.

Sometimes you will not have G′.
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Anderson Acceleration

Motivation

Electronic Structure Computations

Nonlinear eignevalue problem: Kohn-Sham equations

Hks [ψi ] = −1

2
∇2ψi + V (ρ)ψi = λiψi i = 1, . . . ,N

where the charge density is

ρ =
N∑
i=1

|ψi |2.

Write this as
H(ρ)Ψ = ΛΨ
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Anderson Acceleration

Motivation

Self-Consistent Field iteration (SCF)

Given ρ

Solve the linear eigenvalue problem

H(ρ)Ψ = ΛΨ

for the N eigenvalues/vectors you want.

Update the charge density via

ρ←
N∑
i=1

|ψi |2.

Terminate if change in ρ is sufficiently small.

This is in the backend of most quantum chemistry/physics codes.
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Anderson Acceleration

Motivation

SCF as a fixed-point iteration

SCF is a fixed point iteration

ρ← G(ρ)

Not clear how to differentiate G

termination criteria in eigen-solver

multiplicities of eigenvalues not known at the start
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Anderson Acceleration

Algorithms and Theory

Anderson Acceleration

anderson(u0,G,m)

u1 = G(u0); F0 = G(u0)− u0
for k = 1, . . . do
mk ≤ min(m, k)
Fk = G(uk)− uk
Minimize ‖∑mk

j=0 α
k
j Fk−mk+j‖ subject to

∑mk
j=0 α

k
j = 1.

uk+1 =
∑mk

j=0 α
k
j G(uk−mk+j)

end for

C. T. Kelley Anderson Acceleration Wamplerfest, June 6, 2017 9 / 39



Anderson Acceleration

Algorithms and Theory

Other names for Anderson

Pulay mixing (Pulay 1980)

Direct iteration on the iterative subspace (DIIS)
Rohwedder/Scheneider 2011

Nonlinear GMRES (Washio 1997)
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Anderson Acceleration

Algorithms and Theory

Terminology

m, depth. We refer to Anderson(m).
Anderson(0) is Picard.

F(u) = G(u)− u, residual

{αk
j }, coefficients

Minimize ‖∑mk
j=0 α

k
j Fk−mk+j‖ subject to

∑mk
j=0 α

k
j = 1.

is the optimization problem.

‖ · ‖, `2, `1, or `∞

C. T. Kelley Anderson Acceleration Wamplerfest, June 6, 2017 11 / 39



Anderson Acceleration

Algorithms and Theory

Solving the Optimization Problem

Solve the linear least squares problem:

min

∥∥∥∥Fk −
mk−1∑
j=0

αk
j (Fk−mk+j − Fk)

∥∥∥∥2
2

,

for {αk
j }mk−1

j=0 and then

αk
mk

= 1−
mk−1∑
j=0

αk
j .

More or less what’s in the codes.
LP solve for ‖ · ‖1 and ‖ · ‖∞. That’s bad for our customers.
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Anderson Acceleration

Algorithms and Theory

Convergence Theory

Most older work assumed unlimited storage or very special
cases.

For unlimited storage, Anderson looks like a Krylov method
and it is equivalent to GMRES (Walker-Ni 2011).
Anderson is also equivalent to a multi-secant quasi-Newton
method (Fang-Saad + many others).

In practice m ≤ 5 most of the time
and 5 is generous.

The first general convergence results for the method
as implemented in practice are ours.
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Anderson Acceleration

Algorithms and Theory

Convergence Results: Toth-K 2015

Critical idea: prove acceleration instead of convergence.

Assume G is a contraction, constant c.
Objective: do no worse than Picard

Local nonlinear theory; ‖e0‖ is small.

Better results for ‖ · ‖2.
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Anderson Acceleration

Algorithms and Theory

Linear Problems, Toth, K 2015

Here

G(u) = Mu + b, ‖M‖ ≤ c < 1, and F(u) = b− (I−M)u.

Theorem: ‖F(uk+1)‖ ≤ c‖F(uk)‖
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Anderson Acceleration

Algorithms and Theory

Proof: I

Since
∑
αj = 1, the new residual is

F(uk+1) = b − (I −M)uk+1

=
∑mk

j=0 αj [b − (I −M)(b + Muk−mk+j)]

=
∑mk

j=0 αjM [b − (I −M)uk−mk+j ]

= M
∑mk

j=0 αjF(uk−mk+j)

Take norms to get . . .
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Anderson Acceleration

Algorithms and Theory

Proof: II

‖F(uk+1)‖ ≤ c

∥∥∥∥ mk∑
j=0

αjF(uk−mk+j)

∥∥∥∥
Optimality implies that∥∥∥∥ mk∑

j=0

αjF(uk−mk+j)

∥∥∥∥ ≤ ‖F(uk)‖.

That’s it.
Use Taylor for the nonlinear case, which means local convergence.
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Anderson Acceleration

Algorithms and Theory

Assumptions: m = 1

There is u∗ ∈ RN such that F(u∗) = G(u∗)− u∗ = 0.

‖G(u)− G(v)‖ ≤ c‖u − v‖ for u, v near u∗.

G is continuously differentiable near u∗

G has a fixed point and is a smooth contraction in a neighborhood
of that fixed point.
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Anderson Acceleration

Algorithms and Theory

Convergence for Anderson(1) with `2 optimization

Anderson(1) converges and

lim sup
k→∞

‖F(uk+1)‖2
‖F(uk)‖2

≤ c .

Very special case:

Optimization problem is trivial.

No iteration history to keep track of.

On the other hand . . .
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Anderson Acceleration

Algorithms and Theory

Assumptions: m > 1, any norm

The assumptions for m = 1 hold.

There is Mα such that for all k ≥ 0

mk∑
j=1

|αj | ≤ Mα.

Do this by

Hoping for the best.
Reduce mk until it happens.
Reduce mk for conditioning(?)
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Anderson Acceleration

Algorithms and Theory

Convergence for Anderson(m), any norm.

Toth-K, Chen-K
If u0 is sufficiently close to u∗ then the Anderson iteration
converges to u∗ r-linearly with r-factor no greater than ĉ . In fact

lim sup
k→∞

(‖F (uk)‖
‖F (u0)‖

)1/k

≤ c . (1)

Anderson acceleration is not an insane thing to do.
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Anderson Acceleration

Algorithms and Theory

Comments

The local part is serious and is a problem in the chemistry codes.

No guarantee the convergence is monotone. See this in practice.

The conditioning of the least squares problem can be poor.
But that has only a small effect on the results.

The results do not completely reflect practice in that...

Theory seems to be sharp for some problems. But . . .
convergence can sometimes be very fast. Why?
Convergence can depend on physics.
The mathematics does not yet reflect that.
There are many variations in the chemistry/physics literature,
which are not well understood.
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Anderson Acceleration

Algorithms and Theory

EDIIS: Kudin, Scuseria, Cancès 2002

EDIIS (Energy DIIS) globalizes Anderson by constraining αk
j ≥ 0.

The optimization problem is

Minimize

∥∥∥∥Fk −
mk−1∑
j=0

αk
j (Fk−mk+j − Fk)

∥∥∥∥2
2

≡ ‖Aαk − Fk‖22.

subject to
mk−1∑
j=0

αk
j ≤ 1, αk

j ≥ 0.
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Anderson Acceleration

Algorithms and Theory

This could be trouble

This is a QP and we’d have to compute ATA.
A is often very ill-contitioned.

We used QR before which exposed the ill-contitioning less
badly.

You’re looking for the minimum in a smaller set, can that
hurt?
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Anderson Acceleration

Algorithms and Theory

Convergence of EDIIS: Chen-K 2017

If G is a contraction in convex Ω then

‖ek − u∗‖ ≤ ck/(m+1)‖e0 − u∗‖

and the convergence is the same as the local theory when near u∗.
Similar to global results for Newton’s method.
Reflects practice reported by Kudin et al.
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Anderson Acceleration

Algorithms and Theory

Easy problem from Kudin et al

On the other hand, EDIIS is an interpolation scheme: the
coefficientsci are chosen non-negative to ensure that the
interpolated density matrixD̃k belongs to the convex setP̃.
If, as in DIIS, we do not incorporate the inequality con-
straintsci>0, the algorithm fails. We therefore have to solve
the optimization problem

infH E•c2
1

2
cTBc, ci>0, (

i 50

k

ci51J . ~15!

A local minimum of this problem can be obtained with the
reduced gradient algorithm.15 As long as the dimension of
the problem is small~say, for single digit values ofk!, the
global minimum can also be obtained easily by solving the
2k21 equality constrained quadratic programming problems

infH E•c2
1

2
cTBc, (

i 50

k

ci51, ci50 for i PAJ , ~16!

for each set of active constraintsA,$0,1,...,k%, A
Þ$0,1,...,k%, and retaining only the admissible solutions
~those for which all theci are non-negative!. An important
comment here is that for DFT methods, the optimal con-
strained solution may contain zero coefficient for the most
recent Fock matrix. This will make the present interpolated
Fock matrixF̃k11 identical to the interpolated Fock matrix at
the previous cycleF̃k . In such cases, in order to force some
progress in the SCF, we employ nonoptimalci coefficients.
Such coefficients are computed by starting from a trial solu-
tion with ck1151 and then updating it by a sequence of
pairwise combinations of the current vector with vectors that
haveci51, wherei goes fromk21 to 0.

IV. BENCHMARKS AND DISCUSSION

The EDIIS algorithm presented here is more efficient
than the previously developed ODA,7 and thus we will focus

in this section on benchmarking EDIIS versus Pulay’s
DIIS.1,2 We omit ODA from our plots and instead comment
wherever appropriate on its similarities or differences with
respect to EDIIS. In Fig. 1, we plot the convergence pattern
log(En2Ec) for CH3CHO ~acetaldehyde! at the
RHF/6-31G(d) level of theory, starting from a guess ob-
tained by diagonalizing the core Hamiltonian matrix. The
acetaldehyde geometry was optimized at the
RHF/6-31G(d,p) level of theory. The methods presented are
DIIS, EDIIS, and fixed-point~unaccelerated! SCF. Since
fixed-point SCF did not converge starting from the core
guess, we started it from the density obtained after two SCF
cycles with EDIIS. The DIIS method is the fastest when the
density matrix is in the convergence region, EDIIS is less
efficient, while simple SCF is the slowest. The ODA conver-
gence~not shown! is very similar to EDIIS. The same situ-
ation is observed in other well-behaved systems. The fact
that convergence with RCA methods is significantly better
than with the fixed-point SCF demonstrates that RCA is a
true acceleration technique. On the other hand, the slower
speed of EDIIS compared to DIIS can be attributed to the
smaller sensitivity of the minimized function~energy versus
orbital rotation gradient! in the region close to convergence.

Our second example is a tetrahedral UF4 molecule at the
RB3LYP/LANL2DZ level of theory~Fig. 2!. The U–F bond
length is 1.98 Å. All calculations were started with the ‘‘Pro-
jected New-EHT Guess’’14 and five matrices were kept in
the queue. The DIIS method by itself does not converge at all
even after hundreds of iterations. EDIIS, on the other hand,
quickly brings the energy rather close to the final value, and
then spends many cycles getting to the minimum. We also
show in Fig. 2 a combination of EDIIS and DIIS, with the
switch to DIIS occurring when the DIIS error drops below
1022. It is quite remarkable that Pulay’s DIIS method ini-
tially aided by EDIIS also spends hundreds of iterations try-
ing to get to the minimum. One can notice, however, that

FIG. 1. Comparison of SCF conver-
gence patterns in a ‘‘well-behaved’’
case: CH3CHO at the RHF/6-31G(d)
level of theory. FP SCF stands for
fixed-point SCF.En is the current SCF
iteration energy andEc is the con-
verged energy. TheEc value is
2152.914 325 877 a.u.

8259J. Chem. Phys., Vol. 116, No. 19, 15 May 2002 SCF convergence
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Anderson Acceleration

Algorithms and Theory

Hard problem from Kudin et al

once DIIS gets the energy within 1025 a.u. of the solution,
the slope is steeper than for EDIIS~left side in Fig. 2!. We
note that a rather pathological behavior exhibited in this sys-
tem can be rationalized in terms of the flexibility of urani-
um’s f electrons. Overall, while EDIIS provides quite mono-
tonical convergence, DIIS either wanders around trying to
get close to a minimum, or rapidly goes to a minimum once
it gets sufficiently close to it. The ODA method~not shown
in Fig. 2! is slower than EDIIS, although, the overall trend is
similar.

While in the case of the HF method the RCA converged
density matrix always contains integer occupations, for KS-
DFT methods this is not necessarily true.10 As was men-
tioned earlier, RCA converges KS-DFT density to a solution
of a generalized Kohn–Sham problem, which might have
fractional occupations at the Fermi level. Therefore, this fact
leads to two distinct patterns for EDIIS behavior in KS-DFT
calculations. In most cases EDIIS drives the SCF to a solu-
tion with integer occupations. In the second scenario, the
EDIIS interpolated density matrix contains fractional occu-
pations, and no tight convergence is achieved.

An example of a system where EDIIS points to a solu-
tion with fractional occupations is chromium carbide CrC,
with an interatomic distance of 2 Å at the RBLYP/6-31G(d)
level of theory. Figure 3 contains the actual DIIS and EDIIS
energies at each cycle, as well as the EDIIS interpolated
energy computed by Eq.~8!. It is likely that for this example
there is no solution of the standard KS equations with integer
occupations without violation of theaufbauprinciple.16 Con-
sequently, DIIS cannot get anywhere, since we are not using
a level shift to force holes below the Fermi energy. EDIIS
quickly brings the interpolated energy close to the limiting
value; however, the actual energy computed withaufbauoc-
cupations changes from cycle to cycle due to jumping occu-
pations. The substantial discrepancy between actual and in-

terpolated EDIIS energies observed in Fig. 3 indicates that a
low energy solution contains fractional occupation numbers
~FONs!. By starting from a somewhat converged density ma-
trix and using a level shift and DIIS, we were able to get a
solution with integer occupations andaufbauviolations.16

Since DIIS is not able to handle FONs at all, and EDIIS
cannot optimize FONs efficiently, one needs a reliable way
to detect these situations and take appropriate action. We do
emphasize that recognizing FONs is extremely important,
since without switching to FON optimization techniques no
tight convergence can be achieved. In this case, one could
rely on a couple of indicators. First,f EDIIS is a good approxi-

mation to the energy for interpolatedD̃ ~and is exact for the
HF method!. So, whenf EDIIS is significantly lower than any
of the last SCF energies, it is likely that FONs are present. A
more thorough approach is to diagonalize the relaxed density

matrix D̃k and check whether its eigenvalues are close to
either 0 or 1. For cases where fractionally occupied solutions
are the lowest in energy, there are several orbitals clustered
around the Fermi level and an initial guess for fractional

occupations can be extracted from the eigenvalues ofD̃k . In
such cases, the commutator error usually does not drop be-
low ;1022– 531023. Here, one can either switch to a
method that can converge an integer occupied solution with
holes below the Fermi level~DIIS with level shift,3 or con-
jugate gradient density matrix search17! or start optimizing
fractional occupations. While ODA is a possible way to op-
timize FONs, its speed is slow.10 Since at the point where
one can detect FONs the density is already fairly converged,
we believe that FON optimization methods that use more
information about the system are bound to be faster. For
example, the method suggested in Ref. 18 employs orbital
energies to find the optimal amount of charge to be redistrib-
uted among fractionally occupied orbitals. Another interest-

FIG. 2. Comparison of SCF conver-
gence patterns in a ‘‘challenging’’
case: SCF convergence for UF4 at the
RB3LYP/6-31G(d) level of theory. In-
terpolated energies are denoted by
curly brackets.En is the current SCF
iteration energy andEc is the con-
verged energy. TheEc value obtained
in all successfully completed calcula-
tions is2451.219 613 43 a.u.

8260 J. Chem. Phys., Vol. 116, No. 19, 15 May 2002 Kudin, Scuseria, and Cancès
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Anderson Acceleration

Algorithms and Theory

Multiphysics Coupling

Toth, Ellis, Clarno, Hamilton, K, Pawlowski, Slattery 2015-6
Objective: Iterate coupled simulations to consistency.
Problems:

Black-box solvers

Legacy codes

Table lookups

Internal stochastics

Jacobian information hard to get.
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Algorithms and Theory

Reactor Physics

Fixed point map has Monte Carlo neutronics.
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Anderson Acceleration

Algorithms and Theory

Results

Theory and practice for Anderson.
Extends work for Newton (Willert-K, 2013)

Technical but reasonable assumptions.

Asymptotic results as particle count increases.
Given K , ĉ ∈ (c , 1), and ω ∈ (0, 1) there is NP such that if
the number of particles is ≥ NP then, if e0 is sufficiently small,

Prob(‖F(uk)‖ ≤ ĉk‖F(u0)‖) > 1− ω

for all 0 ≤ k ≤ K .
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Anderson Acceleration

Example

Example from Radiative Transfer

Chandrasekhar H-equation

H(µ) = G(H) ≡
(

1− ω

2

∫ 1

0

µ

µ+ ν
H(ν) dν.

)−1
ω ∈ [0, 1] is a physical parameter.
F′(H∗) is singular when ω = 1.

ρ(G′(H∗)) ≤ 1−
√

1− ω < 1
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Example

Numerical Experiments

Discretize with 500 point composite midpoint rule.

Compare Newton-GMRES with Anderson(m).

Terminate when ‖F(Hk)‖2/‖F(H0)‖2 ≤ 10−8

ω = .5, .99, 1.0

0 ≤ m ≤ 3

`1, `2, `∞ optimizations

Tabulate

κmax : max condition number of least squares problems
Smax : max absolute sum of coefficients
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Anderson Acceleration

Example

Newton-GMRES vs Anderson(0)

Function evaluations:

Newton-GMRES Fixed Point

ω .5 .99 1.0 .5 .99 1.0

F s 12 18 49 11 75 23970
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Example

Anderson(m)

`1 Optimization `2 Optimization `∞ Optimization

ω m F s κmax Smax F s κmax Smax F s κmax Smax

0.50 1 7 1.00e+00 1.4 7 1.00e+00 1.4 7 1.00e+00 1.5
0.99 1 11 1.00e+00 3.5 11 1.00e+00 4.0 10 1.00e+00 10.1
1.00 1 21 1.00e+00 3.0 21 1.00e+00 3.0 19 1.00e+00 4.8
0.50 2 6 1.36e+03 1.4 6 2.90e+03 1.4 6 2.24e+04 1.4
0.99 2 10 1.19e+04 5.2 10 9.81e+03 5.4 10 4.34e+02 5.9
1.00 2 18 1.02e+05 43.0 16 2.90e+03 14.3 34 5.90e+05 70.0
0.50 3 6 7.86e+05 1.4 6 6.19e+05 1.4 6 5.91e+05 1.4
0.99 3 10 6.51e+05 5.2 10 2.17e+06 5.4 11 1.69e+06 5.9
1.00 3 22 1.10e+08 18.4 17 2.99e+06 23.4 51 9.55e+07 66.7

C. T. Kelley Anderson Acceleration Wamplerfest, June 6, 2017 34 / 39



Anderson Acceleration

Example

Observations

For m > 0, Anderson(m) is much better than Picard

Anderson(m) does better than Newton GMRES

There is little benefit in larger m

`∞ optimization seems to be a poor idea

`1 optimization appears fine, but the cost is not worth it
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Anderson Acceleration

Summary

How well does this REALLY work?

Our experiments and the rest of the world say . . .

Night and day salvation in electonic structure computations,
need a few hacks.

Varies from a lot better than Picard to only a little better.

Anderson theory is about residuals.
Conditioning less important for theory, but maybe in practice.

Stochastic functions ok.
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Summary

Summary

Anderson acceleration can improve Picard iteration

Implementation does not require derivatives

Good when Newton is not possible
Convergence theory (and practice) for 1965 version.
EDIIS globalizes, but at a cost.

Applications to electronic structure computations and
multiphysics coupling

In TRILINOS/SUNDIALS for your acceleration pleasure.
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