Kinematic mapping - recent results and applications

Manfred Husty

Institute for Basic Sciences in Engineering, Unit for Geometry and CAD, University of Innsbruck, Austria

POLYNOMIALS KINEMATICS AND ROBOTICS

University of Notre Dame, June 2017

Overview

Kinematic mapping

Geometry of the Study quadric Dual Quaternion interpretation - Clifford Algebra Image space transformations

Constraint Varieties

Derivation of constraint equations Global Singularities Operation Modes - Ideal Decomposition

Path Planning and Cable Robots

Path planning in kinematic image space Cable driven parallel manipulators

Euclidean displacement:

$$\gamma \colon \mathbb{R}^3 \to \mathbb{R}^3, \quad \mathbf{x} \mapsto \mathbf{A}\mathbf{x} + \mathbf{a} \tag{1}$$

A proper orthogonal 3 \times 3 matrix, $\boldsymbol{a} \in \mathbb{R}^3 \dots$ vector

group of Euclidean displacements: SE(3)

$$\begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix} \mapsto \begin{bmatrix} 1 & \mathbf{o}^T \\ \mathbf{a} & \mathbf{A} \end{bmatrix} \cdot \begin{bmatrix} 1 \\ \mathbf{x} \end{bmatrix}.$$
(2)

Geometry of the Study quadric Dual Quaternion interpretation - Clifford Algebra mage space transformations

Study's kinematic mapping x:

 $\varkappa: \alpha \in \mathrm{SE}(3) \mapsto \mathbf{X} \in \mathbb{P}^7$

크

イロト イヨト イヨト イヨト

Kinematic mapping Geometry of the Study quadric Constraint Varieties Dual Quaternion interpretation - Clifford Algebra ath Planning and Cable Robots Image space transformations

Study's kinematic mapping x:

$$\varkappa: \alpha \in \operatorname{SE}(3) \mapsto \mathbf{x} \in \mathbb{P}^7$$

pre-image of **x** is the displacement α

$$\frac{1}{\Delta} \begin{bmatrix} \Delta & 0 & 0 & 0 \\ p & x_0^2 + x_1^2 - x_2^2 - x_3^2 & 2(x_1x_2 - x_0x_3) & 2(x_1x_3 + x_0x_2) \\ q & 2(x_1x_2 + x_0x_3) & x_0^2 - x_1^2 + x_2^2 - x_3^2 & 2(x_2x_3 - x_0x_1) \\ r & 2(x_1x_3 - x_0x_2) & 2(x_2x_3 + x_0x_1) & x_0^2 - x_1^2 - x_2^2 + x_3^2 \end{bmatrix}$$
(3)
$$p = 2(-x_0y_1 + x_1y_0 - x_2y_3 + x_3y_2),$$
$$q = 2(-x_0y_2 + x_1y_3 + x_2y_0 - x_3y_1),$$
$$r = 2(-x_0y_3 - x_1y_2 + x_2y_1 + x_3y_0),$$

 $\Delta = x_0^2 + x_1^2 + x_2^2 + x_3^2.$

크

イロト イ団ト イヨト イヨト

Kinematic mapping Geometry of the Study quadric Constraint Varieties Dual Quaternion interpretation - Clifford Algebra ath Planning and Cable Robots Image space transformations

Study's kinematic mapping x:

 $\Delta =$

$$\varkappa: \alpha \in SE(3) \mapsto \mathbf{x} \in \mathbb{P}^7$$

pre-image of **x** is the displacement α

$$\begin{array}{l} \frac{1}{\Delta} \begin{bmatrix} \Delta & 0 & 0 & 0 \\ p & x_0^2 + x_1^2 - x_2^2 - x_3^2 & 2(x_1x_2 - x_0x_3) & 2(x_1x_3 + x_0x_2) \\ q & 2(x_1x_2 + x_0x_3) & x_0^2 - x_1^2 + x_2^2 - x_3^2 & 2(x_2x_3 - x_0x_1) \\ r & 2(x_1x_3 - x_0x_2) & 2(x_2x_3 + x_0x_1) & x_0^2 - x_1^2 - x_2^2 + x_3^2 \end{bmatrix} \\ p = 2(-x_0y_1 + x_1y_0 - x_2y_3 + x_3y_2), \\ q = 2(-x_0y_2 + x_1y_3 + x_2y_0 - x_3y_1), \\ r = 2(-x_0y_3 - x_1y_2 + x_2y_1 + x_3y_0), \\ x_0^2 + x_1^2 + x_2^2 + x_3^2. \\ S_6^2 : x_0y_0 + x_1y_1 + x_2y_2 + x_3y_3 = 0, \quad x_i \text{ not all } 0 \end{array}$$
(3)

 $[x_0 : \cdots : y_3]^T$ Study parameters = parametrization of SE(3) with dual quaternions

크

Kinematic mapping Geometry of the Study quadric Constraint Varieties Dual Quaternion interpretation - Clifford Algebra Path Planning and Cable Robots Image space transformations

How do we get the Study parameters when a proper orthogonal matrix $\mathbf{A} = [a_{ij}]$ and the translation vector $\mathbf{a} = [a_k]^T$ are given?

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Kinematic mapping Geometry of the Study quadric Constraint Varieties Dual Quaternion interpretation - Clifford Algebra Path Planning and Cable Robots Image space transformations

How do we get the Study parameters when a proper orthogonal matrix $\mathbf{A} = [a_{ij}]$ and the translation vector $\mathbf{a} = [a_k]^T$ are given?

Cayley map, not singularity free (180°)

Kinematic mapping Geometry of the Study quadric Constraint Varieties Dual Quaternion interpretation - Clifford Algebra Path Planning and Cable Robots Image space transformations

How do we get the Study parameters when a proper orthogonal matrix $\mathbf{A} = [a_{ij}]$ and the translation vector $\mathbf{a} = [a_k]^T$ are given?

Cayley map, not singularity free (180°)

Rotation part:

$$\begin{aligned} x_0 : x_1 : x_2 : x_3 &= 1 + a_{11} + a_{22} + a_{33} : a_{32} - a_{23} : a_{13} - a_{31} : a_{21} - a_{12} \\ &= a_{32} - a_{23} : 1 + a_{11} - a_{22} - a_{33} : a_{12} + a_{21} : a_{31} + a_{13} \\ &= a_{13} - a_{31} : a_{12} + a_{21} : 1 - a_{11} + a_{22} - a_{33} : a_{23} + a_{32} \\ &= a_{21} - a_{12} : a_{31} + a_{13} : a_{23} - a_{32} : 1 - a_{11} - a_{22} + a_{33} \end{aligned}$$
(6)

Translation part:

$$2y_0 = a_1x_1 + a_2x_2 + a_3x_3, \quad 2y_1 = -a_1x_0 + a_3x_2 - a_2x_3, \\ 2y_2 = -a_2x_0 - a_3x_1 + a_1x_3, \quad 2y_3 = -a_3x_0 + a_2x_1 - a_1x_2.$$
(7)

Geometry of the Study quadric Dual Quaternion interpretation - Clifford Algebra mage space transformations

Invariant geometric objects in \mathbb{P}^7

크

イロト イ団ト イヨト イヨト

Geometry of the Study quadric Dual Quaternion interpretation - Clifford Algebra Image space transformations

Invariant geometric objects in \mathbb{P}^7

Study quadric S_6^2

 $x_0y_0 + x_1y_1 + x_2y_2 + x_3y_3 = 0$

크

Geometry of the Study quadric Dual Quaternion interpretation - Clifford Algebra mage space transformations

Invariant geometric objects in \mathbb{P}^7

Study quadric S_6^2

$x_0y_0 + x_1y_1 + x_2y_2 + x_3y_3 = 0$ Null-cone \mathcal{N}

$$x_0^2 + x_1^2 + x_2^2 + x_3^2 = 0$$

Geometry of the Study quadric Dual Quaternion interpretation - Clifford Algebra mage space transformations

Invariant geometric objects in \mathbb{P}^7

Study quadric S_6^2

 $x_0y_0 + x_1y_1 + x_2y_2 + x_3y_3 = 0$ Null-cone N

> $x_0^2 + x_1^2 + x_2^2 + x_3^2 = 0$ including exceptional space: $\mathcal{E} : x_0 = x_1 = x_2 = x_3 = 0$

Geometry of the Study quadric Dual Quaternion interpretation - Clifford Algebra Image space transformations

Invariant geometric objects in \mathbb{P}^7

Study quadric S_6^2

exceptional quadric ${\mathcal Y}$

$$y_0^2+y_1^2+y_2^2+y_3^2=0\in {\cal E}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

 $x_0y_0 + x_1y_1 + x_2y_2 + x_3y_3 = 0$ Null-cone N

> $x_0^2 + x_1^2 + x_2^2 + x_3^2 = 0$ including exceptional space: $\mathcal{E} : x_0 = x_1 = x_2 = x_3 = 0$

Geometry of the Study quadric Dual Quaternion interpretation - Clifford Algebra Image space transformations

Invariant geometric objects in \mathbb{P}^7

Study quadric S_6^2

 $x_0y_0 + x_1y_1 + x_2y_2 + x_3y_3 = 0$ Null-cone \mathcal{N}

> $x_0^2 + x_1^2 + x_2^2 + x_3^2 = 0$ including exceptional space: $\mathcal{E} : x_0 = x_1 = x_2 = x_3 = 0$

exceptional quadric \mathcal{Y} $y_0^2 + y_1^2 + y_2^2 + y_3^2 = 0 \in \mathcal{E}$ pencil of quadrics \mathcal{D} $\mathcal{D} = \lambda S_e^2 + \mu \mathcal{N}$

Geometry of the Study quadric Dual Quaternion interpretation - Clifford Algebra Image space transformations

Geometry of the Study quadric

• S_6^2 is a hyper-quadric of seven dimensional projective space \mathbb{P}^7 .

- S_6^2 is a hyper-quadric of seven dimensional projective space \mathbb{P}^7 .
- Lines in the Study quadric S²₆ correspond either to a one parameter set of rotations or to a one parameter set of translations.

- S_6^2 is a hyper-quadric of seven dimensional projective space \mathbb{P}^7 .
- Lines in the Study quadric S²₆ correspond either to a one parameter set of rotations or to a one parameter set of translations.
- ► Lines through the identity correspond to one-parameter subgroups of SE(3) and are either rotation or translation subgroups.

- ► S_6^2 is a hyper-quadric of seven dimensional projective space \mathbb{P}^7 .
- Lines in the Study quadric S²₆ correspond either to a one parameter set of rotations or to a one parameter set of translations.
- Lines through the identity correspond to one-parameter subgroups of SE(3) and are either rotation or translation subgroups.
- The maximal subspaces of S_6^2 are of dimension three ("3-planes", *A*-planes, *B*-planes, left and right rulings).

- ► S_6^2 is a hyper-quadric of seven dimensional projective space \mathbb{P}^7 .
- Lines in the Study quadric S²₆ correspond either to a one parameter set of rotations or to a one parameter set of translations.
- Lines through the identity correspond to one-parameter subgroups of SE(3) and are either rotation or translation subgroups.
- ▶ The maximal subspaces of S_6^2 are of dimension three ("3-planes", *A*-planes, *B*-planes, left and right rulings).
- ➤ 3-planes passing through the identity are the three dimensional subgroups of SE(3) (SO(3), SE(2), T(3)).

- ► S_6^2 is a hyper-quadric of seven dimensional projective space \mathbb{P}^7 .
- Lines in the Study quadric S²₆ correspond either to a one parameter set of rotations or to a one parameter set of translations.
- Lines through the identity correspond to one-parameter subgroups of SE(3) and are either rotation or translation subgroups.
- ▶ The maximal subspaces of S_6^2 are of dimension three ("3-planes", *A*-planes, *B*-planes, left and right rulings).
- 3-planes passing through the identity are the three dimensional subgroups of SE(3) (SO(3), SE(2), T(3)).
- *E* is an A-plane.

- ► S_6^2 is a hyper-quadric of seven dimensional projective space \mathbb{P}^7 .
- Lines in the Study quadric S²₆ correspond either to a one parameter set of rotations or to a one parameter set of translations.
- ► Lines through the identity correspond to one-parameter subgroups of SE(3) and are either rotation or translation subgroups.
- ▶ The maximal subspaces of S_6^2 are of dimension three ("3-planes", *A*-planes, *B*-planes, left and right rulings).
- ➤ 3-planes passing through the identity are the three dimensional subgroups of SE(3) (SO(3), SE(2), T(3)).
- *E* is an A-plane.
- Wether an A-plane corresponds to SO(3) or SE(2) depends on the intersection of the plane with *E*.

- ► S_6^2 is a hyper-quadric of seven dimensional projective space \mathbb{P}^7 .
- Lines in the Study quadric S²₆ correspond either to a one parameter set of rotations or to a one parameter set of translations.
- ► Lines through the identity correspond to one-parameter subgroups of SE(3) and are either rotation or translation subgroups.
- ▶ The maximal subspaces of S_6^2 are of dimension three ("3-planes", *A*-planes, *B*-planes, left and right rulings).
- ➤ 3-planes passing through the identity are the three dimensional subgroups of SE(3) (SO(3), SE(2), T(3)).
- *E* is an A-plane.
- Wether an A-plane corresponds to SO(3) or SE(2) depends on the intersection of the plane with *E*.

more properties: J. Selig, Geometric Fundamentals of Robotics, 2nd. ed. Springer 2005

Dual Quaternions

generated by units i, j, k, ε i, ε j, ε k $\in \mathbb{R}$:

$$Q = x_0 + \mathbf{i}x_1 + \mathbf{j}x_2 + \mathbf{k}x_3 + \varepsilon y_0 + \varepsilon \mathbf{i}y_1 + \varepsilon \mathbf{j}y_2 + \varepsilon \mathbf{k}y_3$$

 $\varepsilon \dots$ dual unit $\varepsilon^2 = 0$

크

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Dual Quaternions

generated by units i, j, k, ε i, ε j, ε k $\in \mathbb{R}$:

$$Q = x_0 + \mathbf{i}x_1 + \mathbf{j}x_2 + \mathbf{k}x_3 + \varepsilon y_0 + \varepsilon \mathbf{i}y_1 + \varepsilon \mathbf{j}y_2 + \varepsilon \mathbf{k}y_3$$

 $\varepsilon \dots$ dual unit $\varepsilon^2 = 0$

conjugate dual quaternion

$$\overline{Q} = x_0 - \mathbf{i}x_1 - \mathbf{j}x_2 - \mathbf{k}x_3 + \varepsilon y_0 - \varepsilon \mathbf{i}y_1 - \varepsilon \mathbf{j}y_2 - \varepsilon \mathbf{k}y_3$$

with $Q\overline{Q} = I$

Dual Quaternions

generated by units i, j, k, ε i, ε j, ε k $\in \mathbb{R}$:

$$Q = x_0 + \mathbf{i}x_1 + \mathbf{j}x_2 + \mathbf{k}x_3 + \varepsilon y_0 + \varepsilon \mathbf{i}y_1 + \varepsilon \mathbf{j}y_2 + \varepsilon \mathbf{k}y_3$$

 $\varepsilon \dots$ dual unit $\varepsilon^2 = 0$

conjugate dual quaternion

$$\overline{Q} = x_0 - \mathbf{i}x_1 - \mathbf{j}x_2 - \mathbf{k}x_3 + \varepsilon y_0 - \varepsilon \mathbf{i}y_1 - \varepsilon \mathbf{j}y_2 - \varepsilon \mathbf{k}y_3$$

with $Q\overline{Q} = I$

McCarthy, ...

Geometry of the Study quadric Dual Quaternion interpretation - Clifford Algebra Image space transformations

Image space transformations

Abbildung: Fixed and moving coordinate systems

Abbildung: Robot coordinate systems

< ロ > < 同 > < 回 > < 回 >

Geometry of the Study quadric Dual Quaternion interpretation - Clifford Algebra Image space transformations

Image space transformations

Abbildung: Fixed and moving coordinate systems

Abbildung: Robot coordinate systems

A (1) > A (1) > A

- The relative displacement α depends on the choice of fixed and moving frame.
- Coordinate systems are usually attached to the base and the end-effector of a mechanism.
- Changes of fixed and moving frame induce transformations on S²₆, impose a geometric structure on S²₆.
- Canonical frames.

Geometry of the Study quadric Dual Quaternion interpretation - Clifford Algebra Image space transformations

Image space transformations

$$\mathbf{y} = \mathbf{T}_f \mathbf{T}_m \mathbf{x}, \quad \mathbf{T}_m = \begin{bmatrix} \mathbf{A} & \mathbf{O} \\ \mathbf{B} & \mathbf{A} \end{bmatrix}, \quad \mathbf{T}_f = \begin{bmatrix} \mathbf{C} & \mathbf{O} \\ \mathbf{D} & \mathbf{C} \end{bmatrix},$$
(8)

크

イロト イヨト イヨト イヨト

Geometry of the Study quadric Dual Quaternion interpretation - Clifford Algebra Image space transformations

Image space transformations

$$\mathbf{y} = \mathbf{T}_f \mathbf{T}_m \mathbf{x}, \quad \mathbf{T}_m = \begin{bmatrix} \mathbf{A} & \mathbf{O} \\ \mathbf{B} & \mathbf{A} \end{bmatrix}, \quad \mathbf{T}_f = \begin{bmatrix} \mathbf{C} & \mathbf{O} \\ \mathbf{D} & \mathbf{C} \end{bmatrix},$$
(8)

$$\mathbf{A} = \begin{bmatrix} m_0 & -m_1 & -m_2 & -m_3 \\ m_1 & m_0 & m_3 & -m_2 \\ m_2 & -m_3 & m_0 & m_1 \\ m_3 & m_2 & -m_1 & m_0 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} m_4 & -m_5 & -m_6 & -m_7 \\ m_5 & m_4 & m_7 & -m_6 \\ m_6 & -m_7 & m_4 & m_5 \\ m_7 & m_6 & -m_5 & m_4 \end{bmatrix}$$
(9)

크

イロト イヨト イヨト イヨト

Geometry of the Study quadric Dual Quaternion interpretation - Clifford Algebra Image space transformations

Image space transformations

$$\mathbf{y} = \mathbf{T}_f \mathbf{T}_m \mathbf{x}, \quad \mathbf{T}_m = \begin{bmatrix} \mathbf{A} & \mathbf{O} \\ \mathbf{B} & \mathbf{A} \end{bmatrix}, \quad \mathbf{T}_f = \begin{bmatrix} \mathbf{C} & \mathbf{O} \\ \mathbf{D} & \mathbf{C} \end{bmatrix},$$
(8)

$$\mathbf{A} = \begin{bmatrix} m_0 & -m_1 & -m_2 & -m_3 \\ m_1 & m_0 & m_3 & -m_2 \\ m_2 & -m_3 & m_0 & m_1 \\ m_3 & m_2 & -m_1 & m_0 \end{bmatrix}, \qquad \mathbf{B} = \begin{bmatrix} m_4 & -m_5 & -m_6 & -m_7 \\ m_5 & m_4 & m_7 & -m_6 \\ m_6 & -m_7 & m_4 & m_5 \\ m_7 & m_6 & -m_5 & m_4 \end{bmatrix}$$
(9)
$$\mathbf{C} = \begin{bmatrix} f_0 & -f_1 & -f_2 & -f_3 \\ f_1 & f_0 & -f_3 & f_2 \\ f_2 & f_3 & f_0 & -f_1 \\ f_3 & -f_2 & f_1 & f_0 \end{bmatrix}, \qquad \mathbf{D} = \begin{bmatrix} f_4 & -f_5 & -f_6 & -f_7 \\ f_5 & f_4 & -f_7 & f_6 \\ f_6 & f_7 & f_4 & -f_5 \\ f_7 & -f_6 & f_5 & f_4 \end{bmatrix}$$
(10)

and **O** is the four by four zero matrix.

イロト イ団ト イヨト イヨト

크

- ► **T**_m and **T**_f commute
- ► **T**_m and **T**_f induce transformations of P^7 that fix S_6^2 , the exceptional generator \mathcal{E} the exceptional quadric \mathcal{Y} the Null-cone \mathcal{N} and the pencil $\mathcal{D} = \lambda S_6^2 + \mu \mathcal{N}$
- Clifford translations on S²₆

Derivation of constraint equations Global Singularities Operation Modes - Ideal Decomposition

Constraint varieties

イロト イヨト イヨト イヨト

크

Derivation of constraint equations Global Singularities Operation Modes - Ideal Decomposition

Constraint varieties

• a constraint that removes one degree of freedom maps to a hyper-surface in \mathbb{P}^7

Derivation of constraint equations Global Singularities Operation Modes - Ideal Decomposition

Constraint varieties

- \blacktriangleright a constraint that removes one degree of freedom maps to a hyper-surface in \mathbb{P}^7
- a set of constraints corresponds to a set of polynomial equations

• • • • • • • • • • • • •

Global Kinematics - Methods: Derivation of constraint equations

Three methods:

- Geometric constraint equations
- Elimination method
- Linear implicitization algorithm

Global Kinematics - Methods: Derivation of constraint equations

Three methods:

- Geometric constraint equations
- Elimination method
- Linear implicitization algorithm

- 1. Constraint equations are algebraic equations as long as no helical joint is in the mechanism
- 2. Derive at first the constraint equations for a canonical chain (= best adapted coordinate systems to base and end effector)
- 3. Change of frames is linear in algebraic (dual quaternion) parameters

1. Geometric constraint equations

For simple chains

2

イロト イヨト イヨト イヨト

Derivation of constraint equations Global Singularities Operation Modes - Ideal Decomposition

1. Geometric constraint equations

For simple chains

Abbildung: 3-RPS parallel robot

each leg has two constraints:

- 1. plane constraint
- 2. distance constraint

< ロ > < 同 > < 回 > < 回 >

Derivation of constraint equations Global Singularities Operation Modes - Ideal Decomposition

1. Geometric constraint equations

For simple chains

Abbildung: 3-RPS parallel robot

each leg has two constraints:

- 1. plane constraint
- 2. distance constraint

three legs \rightarrow 6 equations (6 polynomials) = complete description of the manipulator

< ロ > < 同 > < 回 > < 回 >

Derivation of constraint equations Global Singularities Operation Modes - Ideal Decomposition

1. Geometric constraint equations

For simple chains

Abbildung: 3-RPS parallel robot

each leg has two constraints:

- 1. plane constraint
- 2. distance constraint

three legs \rightarrow 6 equations (6 polynomials) = complete description of the manipulator

This method was used 20 years ago to derive the constraint equations of the Stewart Gough platform and solve the DK

Derivation of constraint equations Global Singularities Operation Modes - Ideal Decomposition

2. Elimination method

Write the forward kinematics and eliminate the motion parameters

크

イロト イヨト イヨト イヨト

2. Elimination method

Write the forward kinematics and eliminate the motion parameters

also only for simple chains recommended (because of the introduction of projection roots)

2. Elimination method

Write the forward kinematics and eliminate the motion parameters

also only for simple chains recommended (because of the introduction of projection roots)

 $\ensuremath{\mathsf{m}}\xspace$. . . number of equations to be expected:

n ... DoF of the chain

m = 6 – *n*

2. Elimination method

Write the forward kinematics and eliminate the motion parameters

also only for simple chains recommended (because of the introduction of projection roots)

m ... number of equations to be expected: n ... DoF of the chain

m = 6 - *n*

Example:

3-R chain \rightarrow 3 constraint equations describing a 3-dim geometric object sitting on the Study quadric (incomplete!!)

Derivation of constraint equations Global Singularities Operation Modes - Ideal Decomposition

3. Linear implicitization algorithm

D. R. Walter and M. L. H. On Implicitization of Kinematic Constraint Equations. Machine Design Research, 26:218-226,2010

Most sophisticated but complete!

3. Linear implicitization algorithm

D. R. Walter and M. L. H. On Implicitization of Kinematic Constraint Equations. Machine Design Research, 26:218-226,2010

Most sophisticated but complete!

Basic idea:

- If one has an implicit representation of a geometric object and a parametric expression, then the parametric expression must fulfill the implicit equation.
- > The constraint equation must be an algebraic equation of a certain degree
- Substitution of the parametric equation into a general polynomial of a degree n yields an (overdetermined) set of linear equations in the coefficients of the implicit equation.

3. Linear implicitization algorithm

D. R. Walter and M. L. H. On Implicitization of Kinematic Constraint Equations. Machine Design Research, 26:218-226,2010

Most sophisticated but complete!

Basic idea:

- If one has an implicit representation of a geometric object and a parametric expression, then the parametric expression must fulfill the implicit equation.
- > The constraint equation must be an algebraic equation of a certain degree
- Substitution of the parametric equation into a general polynomial of a degree n yields an (overdetermined) set of linear equations in the coefficients of the implicit equation.

Example:

The complete description of a 3-R chain needs 9 equations.

 Complete solution of forward and inverse kinematics of arbitrary combinations of kinematic chains

크

イロト イ団ト イヨト イヨト

- Complete solution of forward and inverse kinematics of arbitrary combinations of kinematic chains
- Global description of all singularities (input and output)

- Complete solution of forward and inverse kinematics of arbitrary combinations of kinematic chains
- Global description of all singularities (input and output)
- Computation of the degree of freedom of a kinematic chain or a combination of kinematic chains.

- Complete solution of forward and inverse kinematics of arbitrary combinations of kinematic chains
- Global description of all singularities (input and output)
- Computation of the degree of freedom of a kinematic chain or a combination of kinematic chains.
- Sometimes a complete parametrization of the workspace.

- Complete solution of forward and inverse kinematics of arbitrary combinations of kinematic chains
- Global description of all singularities (input and output)
- Computation of the degree of freedom of a kinematic chain or a combination of kinematic chains.
- Sometimes a complete parametrization of the workspace.
- Identification of different operation modes

- Complete solution of forward and inverse kinematics of arbitrary combinations of kinematic chains
- Global description of all singularities (input and output)
- Computation of the degree of freedom of a kinematic chain or a combination of kinematic chains.
- Sometimes a complete parametrization of the workspace.
- Identification of different operation modes
- New form of polynomial motion interpolation

Let $V \in k^n$ be a constraint variety and let $p = [p_0, \ldots, p_7]^T$ be a point on *V*. The *tangent space* of *V* at *p*, denoted $T_p(V)$, is the variety

$$T_P(V) = \mathbf{V}(d_p(f)): f \subset \mathbf{I}(\mathbf{V})$$
(11)

of linear forms of all polynomials contained in the ideal I(V) in point p.

Let $V \in k^n$ be a constraint variety and let $p = [p_0, \ldots, p_7]^T$ be a point on *V*. The *tangent space* of *V* at *p*, denoted $T_p(V)$, is the variety

$$T_P(V) = \mathbf{V}(d_p(f)) \colon f \subset \mathbf{I}(\mathbf{V})$$
(11)

of linear forms of all polynomials contained in the ideal I(V) in point p.

The local degree of freedom is defined as dim $T_{p}(V)$.

Let $V \in k^n$ be a constraint variety and let $p = [p_0, \dots, p_7]^T$ be a point on *V*. The *tangent space* of *V* at *p*, denoted $T_p(V)$, is the variety

$$T_{\mathcal{P}}(V) = \mathbf{V}(d_{\mathcal{P}}(f)) \colon f \subset \mathbf{I}(\mathbf{V})$$
(11)

of linear forms of all polynomials contained in the ideal I(V) in point p.

The local degree of freedom is defined as dim $T_{p}(V)$.

Jacobian of the set of constraint equations:

$$\mathbf{J}(f_j) = \left(\frac{\partial f_j}{\mathbf{x}_i}, \frac{\partial f_j}{\mathbf{y}_i}\right),\tag{12}$$

< ロ > < 同 > < 回 > < 回 >

Let $V \in k^n$ be a constraint variety and let $p = [p_0, \ldots, p_7]^T$ be a point on *V*. The *tangent space* of *V* at *p*, denoted $T_p(V)$, is the variety

$$T_{\mathcal{P}}(V) = \mathbf{V}(d_{\mathcal{P}}(f)) \colon f \subset \mathbf{I}(\mathbf{V})$$
(11)

of linear forms of all polynomials contained in the ideal I(V) in point p.

The local degree of freedom is defined as dim $T_{\rho}(V)$.

Jacobian of the set of constraint equations:

$$\mathbf{J}(f_j) = \left(\frac{\partial f_j}{\mathbf{x}_i}, \frac{\partial f_j}{\mathbf{y}_i}\right),\tag{12}$$

the manipulator is in a singular pose:

$$S$$
: det $\mathbf{J} = 0$

yields the global singularity variety

 Kinematic mapping
 Derivation of constraint equations

 Constraint Varieties
 Global Singularities

 ath Planning and Cable Robots
 Operation Modes - Ideal Decompositi

Constraint equations of inverted kinematic chains

- What happens to the constraint equations when the manipulator is upside down??
- Change of platform and base!!

 Kinematic mapping
 Derivation of constraint equations

 Constraint Varieties
 Global Singularities

 ath Planning and Cable Robots
 Operation Modes - Ideal Decompositi

Constraint equations of inverted kinematic chains

- What happens to the constraint equations when the manipulator is upside down??
- Change of platform and base!!
- Quaternion conjugation!!

Conjugation - invariant objects

Line v and 5-dim. Subspace w in \mathbb{P}^7

$$\mathbf{v} = \begin{bmatrix} 1\\0\\0\\0\\0\\0\\0\\0\\0 \end{bmatrix} t + \begin{bmatrix} 0\\0\\0\\0\\0\\0\\0\\0\\0 \end{bmatrix} s, \ \mathbf{w} = \begin{bmatrix} 0\\1\\0\\0\\0\\0\\0\\0\\0\\0\\0 \end{bmatrix} t_1 + \begin{bmatrix} 0\\0\\1\\0\\0\\0\\0\\0\\0\\0\\0 \end{bmatrix} t_2 + \ldots + \begin{bmatrix} 0\\0\\0\\0\\0\\0\\0\\1\\1 \end{bmatrix} t_6,$$
with $t, s, t_1, t_2, \ldots, t_6 \in \mathbb{R}$

- \blacktriangleright Inverting a constraint \rightarrow projective transformation in the image space
- topology of the objects is invariant
- $\blacktriangleright\,$ rulings of $\mathcal Y$ are interchanged $\rightarrow\,$ "chirality" in kinematics
- geometric constraints dualize

Cardan Motion (Trammel-, Elliptic- motion) \leftrightarrow Oldham motion

Derivation of constraint equations Global Singularities Operation Modes - Ideal Decomposition

Operation Modes - Ideal Decomposition Example: 3-UPU-Parallel Manipulator

Abbildung: 3-UPU-Model

Abbildung: 3-UPU-manipulator

Six constraint equations

- 1. 3 (quadratic) sphere constraint equations $g_1 g_3$
- 2. 3 (bilinear) plane constraint equations $g_4 g_6$

$$g_4: 4 x_1 y_1 + x_2 y_2 + \sqrt{3} x_2 y_3 + \sqrt{3} x_3 y_2 + 3 x_3 y_3 = 0$$
(13)

$$g_5: 4 x_1 y_1 + x_2 y_2 - \sqrt{3} x_2 y_3 - \sqrt{3} x_3 y_2 + 3 x_3 y_3 = 0$$
(14)

$$g_6: x_1 y_1 + x_2 y_2 = 0$$

(15)

the subsystem $\mathcal{J}=< g_4, g_5, g_6, g_7>$ is independent of the design parameters splits into 10 subsystems

$$\begin{aligned} \mathcal{J}_{1} &= \langle y_{0}, y_{1}, y_{2}, y_{3} \rangle, \ \mathcal{J}_{2} &= \langle x_{0}, y_{1}, y_{2}, y_{3} \rangle, \ \mathcal{J}_{3} &= \langle y_{0}, x_{1}, y_{2}, y_{3} \rangle, \ \mathcal{J}_{4} &= \langle x_{0}, x_{1}, y_{2}, y_{3} \rangle, \\ \mathcal{J}_{5} &= \langle y_{0}, y_{1}, x_{2}, x_{3} \rangle, \ \mathcal{J}_{6} &= \langle x_{0}, y_{1}, x_{2}, x_{3} \rangle, \ \mathcal{J}_{7} &= \langle y_{0}, x_{1}, x_{2}, x_{3} \rangle, \\ \mathcal{J}_{8} &= \langle x_{2} - i \, x_{3}, y_{2} + i \, y_{3}, x_{0} \, y_{0} + x_{3} \, y_{3}, x_{1} \, y_{1} + x_{3} \, y_{3} \rangle, \\ \mathcal{J}_{9} &= \langle x_{2} + i \, x_{3}, y_{2} - i \, y_{3}, x_{0} \, y_{0} + x_{3} \, y_{3}, x_{1} \, y_{1} + x_{3} \, y_{3} \rangle, \\ \mathcal{J}_{10} &= \langle x_{0}, x_{1}, x_{2}, x_{3} \rangle. \end{aligned}$$

- Manipulator with the same actuator lengths has 72 solutions of the direct kinematics.
- Manipulator with different actuator lengths has 78 solutions of the direct kinematics.

イロト イポト イヨト イヨト

Relations between the different components, which relate to different operation modes of the manipulator

	κ_1	κ_2	κ_3	κ_4	κ_5	κ_6	κ_7
κ_1	3	2	2	1	1	0	0
K ₂	2	3	1	2	0	1	-1
κ_3	2	1	3	2	0	-1	1
κ_4	1	2	2	3	-1	-1	-1
κ_5	1	0	0	-1	3	2	2
K ₆	0	1	-1	-1	2	3	-1
κ_7	0	-1	1	-1	2	-1	3

크

イロト イヨト イヨト イヨト

Path planning in kinematic image space

 $\mathbf{x}' = \mathbf{M}\mathbf{x}$

$$\mathbf{d} = [x_0, x_1, x_2, x_3, y_0, y_1, y_2, y_3]^7$$

d point in seven dimensional projective space P⁷ fulfills the quadratic Study condition

$$x_0y_0 + x_1y_1 + x_2y_2 + x_3y_3 = 0, (16)$$

Path planning in kinematic image space

 $\mathbf{x}' = \mathbf{M}\mathbf{x}$

$$\mathbf{d} = [x_0, x_1, x_2, x_3, y_0, y_1, y_2, y_3]^T$$

d point in seven dimensional projective space P⁷ fulfills the quadratic Study condition

$$x_0y_0 + x_1y_1 + x_2y_2 + x_3y_3 = 0, (16)$$

$$\mathbf{M} := \kappa^{-1}(\mathbf{d}) = \frac{1}{\Delta} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ t_1 & x_0^2 + x_1^2 - x_3^2 - x_2^2 & -2x_0x_3 + 2x_2x_1 & 2x_3x_1 + 2x_0x_2 \\ t_2 & 2x_2x_1 + 2x_0x_3 & x_0^2 + x_2^2 - x_1^2 - x_3^2 & -2x_0x_1 + 2x_3x_2 \\ t_3 & -2x_0x_2 + 2x_3x_1 & 2x_3x_2 + 2x_0x_1 & x_0^2 + x_3^2 - x_2^2 - x_1^2 \end{bmatrix}$$
(17)

where $\Delta = x_0^2 + x_1^2 + x_2^2 + x_3^2$ and

$$t_1 = 2x_0y_1 - 2y_0x_1 - 2y_2x_3 + 2y_3x_2,$$

$$t_2 = 2x_0y_2 - 2y_0x_2 - 2y_3x_1 + 2y_1x_3,$$

$$t_3 = 2x_0y_3 - 2y_0x_3 - 2y_1x_2 + 2y_2x_1.$$
(18)

Path planning in kinematic image space

 $\mathbf{x}' = \mathbf{M}\mathbf{x}$

$$\mathbf{d} = [x_0, x_1, x_2, x_3, y_0, y_1, y_2, y_3]^T$$

d point in seven dimensional projective space P⁷ fulfills the quadratic Study condition

$$x_0y_0 + x_1y_1 + x_2y_2 + x_3y_3 = 0, (16)$$

$$\mathbf{M} := \kappa^{-1}(\mathbf{d}) = \frac{1}{\Delta} \begin{bmatrix} 1 & 0 & 0 & 0 \\ t_1 & x_0^2 + x_1^2 - x_3^2 - x_2^2 & -2x_0x_3 + 2x_2x_1 & 2x_3x_1 + 2x_0x_2 \\ t_2 & 2x_2x_1 + 2x_0x_3 & x_0^2 + x_2^2 - x_1^2 - x_3^2 & -2x_0x_1 + 2x_3x_2 \\ t_3 & -2x_0x_2 + 2x_3x_1 & 2x_3x_2 + 2x_0x_1 & x_0^2 + x_3^2 - x_2^2 - x_1^2 \end{bmatrix}$$
(17)

where $\Delta = x_0^2 + x_1^2 + x_2^2 + x_3^2$ and

$$t_1 = 2x_0y_1 - 2y_0x_1 - 2y_2x_3 + 2y_3x_2,$$

$$t_2 = 2x_0y_2 - 2y_0x_2 - 2y_3x_1 + 2y_1x_3,$$

$$t_3 = 2x_0y_3 - 2y_0x_3 - 2y_1x_2 + 2y_2x_1.$$
(18)

exceptional three space

$$x_0 = x_1 = x_2 = x_3 = 0$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

$$\kappa^{-1}: P^7 \setminus E \to SE(3)$$

what is the set of points in P^7 which have the same image under κ^{-1} ????

크

イロト イポト イヨト イヨト

$$\kappa^{-1}: P^7 \setminus E \to SE(3)$$

what is the set of points in P^7 which have the same image under κ^{-1} ????

$$\mathbf{M}(\mathbf{a}) = \mathbf{M}(\mathbf{b}) \tag{19}$$

 $\{\mathbf{a} + \lambda(\mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0}, a_0, a_1, a_2, a_3) \mid \lambda \in \mathbb{R}\}.$

크

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

$$\kappa^{-1}: P^7 \setminus E \to SE(3)$$

what is the set of points in P^7 which have the same image under κ^{-1} ????

$$\mathbf{M}(\mathbf{a}) = \mathbf{M}(\mathbf{b})$$
(19)
$$\{\mathbf{a} + \lambda(0, 0, 0, 0, a_0, a_1, a_2, a_3) \mid \lambda \in \mathbb{R}\}.$$

Theorem

The fiber of point $\mathbf{a} = [a_0, \dots, a_7] \in P^7 \setminus E$ with respect to the extended inverse kinematic map κ^{-1} is a straight line through \mathbf{a} that intersects the exceptional generator E in $[0, 0, 0, 0, a_0, \dots, a_3]$.

< ロ > < 同 > < 回 > < 回 >

$$\kappa^{-1}: P^7 \setminus E \to SE(3)$$

what is the set of points in P^7 which have the same image under κ^{-1} ????

$$\mathbf{M}(\mathbf{a}) = \mathbf{M}(\mathbf{b})$$
(19)
$$\{\mathbf{a} + \lambda(0, 0, 0, 0, a_0, a_1, a_2, a_3) \mid \lambda \in \mathbb{R}\}.$$

Theorem

The fiber of point $\mathbf{a} = [a_0, \dots, a_7] \in P^7 \setminus E$ with respect to the extended inverse kinematic map κ^{-1} is a straight line through \mathbf{a} that intersects the exceptional generator E in $[0, 0, 0, 0, a_0, \dots, a_3]$.

Properties of κ^{-1}

- κ⁻¹ is quadratic, the degree of trajectories is at most twice the degree of the interpolant in P⁷
- one can achieve a geometric continuity of order *n* for the motion with trajectories of degree 2(n + 1)
- At possible intersection points of interpolant and exceptional generator *E*, the map κ^{-1} becomes singular and a degree reduction of the trajectories occurs

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト
Kinematic mapping Constraint Varieties Path Planning and Cable Robots

Path planning in kinematic image space Cable driven parallel manipulators

Cable driven parallel manipulators

크

Kinematic mapping Constraint Varieties Path Planning and Cable Robots

Path planning in kinematic image space Cable driven parallel manipulators

Cable driven parallel manipulators

크

イロト イ団ト イヨト イヨト

Kinematic mapping Constraint Varieties Path Planning and Cable Robots

Path planning in kinematic image space Cable driven parallel manipulators

Cable driven parallel manipulators

Much more complicated than DK Stewart-Gough platform

DK solutions for cable configuration

Number of cables	2	3	4	5
Number of solutions over $\mathbb C$	24	156	216	140

Numbers are due to additional equilibrium constraints!

• • • • • • • • • • • • •

Thanks for your attention!

2