

Algebraic Geometry for Projection Kinematic Analysis of DNA Origami Nano-Mechanisms

Haijun Su

Dept. of Mechanical & Aerospace Engineering (Associate Professor, <u>su.298@osu.edu</u>) Design Innovation and Simulation Laboratory (DISL) (Director, <u>http://disl.osu.edu/</u>) The Ohio State University Columbus, Ohio, USA

Polynomials, Kinematics and Robotics, U. of Notre Dame, 06/06/2017

Outline

- Kinematic analysis and synthesis of rigid body mechanisms using polynomial homotopy
- Kinetostatic analysis and synthesis of compliant mechanisms using polynomial homotopy
- Design of DNA origami mechanisms (DOM)
- Configuration Analysis of DNA Origami Mechanisms via Projection Kinematics

Kinematic Analysis and Synthesis of Rigid Body and Compliant Mechanisms Using Polynomial Homotopy

Kinematics Problems

$$\xrightarrow{\theta_i} \overbrace{a_{ij}, \alpha_{ij}, d_i}^{V}$$

Problems	Dimensions	Joint Actuations	End-effector
Forward Analysis	✓ given	✓ given	? unknown
Inverse Analysis	✓ given	? unknown	✓ given
Dimensional Synthesis	? unknown	? unknown	✓ given

They are all about for solving polynomial systems

Multiple solutions

Milestone Problems in Kinematics

Inverse Kinematics of 6R Manipulator (1980s)

- Tsai, L.W., Morgan, A. (1985), 1-homogeneous homotopy, 256 paths
- Morgan and Sommes (1987), 2-homogeneous homotopy, 96 paths
- Wampler and Morgan (1989), parameter homotopy, 16 paths
- Forward Kinematics of 6-6 Stewart-Gouph Parallel Platform Manipulator (1990s)
 - Raghavan, M and Roth, B., (1993), 960 paths
 - Wampler (1996), 84 paths
- Nine point Synthesis of Planar-4 bar (1990s)
 - Wampler, Morgan and Sommese (1992), 143,360 paths
 - Spatial Rigid Body Guidance Problems (2000s)
 - Kinetostatics of compliant mechanisms (2000s)

Complexity • Six-bar function/path generation problems (2010s)

40

16

1442

Complexity of Mechanism Synthesis Problems

Solutions

	n	Total	GLP	Root	Computation
		Degree	Bound	Count	Cost
PPS (Plane)	6	64	10	10	Resultant
SS (Sphere)	7	128	20	20	Resultant
CS	8	16,384	2,184	804	POLSYS_GLP
(Circular Cylinder)					2Hrs on PC
RPS	10	262,144	9,216	1,024	POLSYS_GLP
(Hyperboloid)					11Hrs on PC
right RRS	10	1,048,576	868,352	94,622	POLSYS_GLP
(Circular Torus)					72mins on BH
PRS	10	2,097,152	247,968	18,202	POLSYS_GLP
(Elliptic Cylinder)					33min on BH
RRS	12	4,194,304	448,702	42,786	POLSYS_GLP
(Torus)					42mins on BH

- *n*: maximum number of task position
- BH: Blue Horizon system of SDSC(1024 CPU used)
- MPC: Beowulf cluster system of UCI medium performance computing
- PC: Pentium 4 1.5 GHz
- Hrs: CPU hours

Eight Point Synthesis of Slider-Crank Linkages

$$\begin{aligned} f_1: & (x-a)\lambda_j = x\theta_j - a + \delta_j \\ y\theta_j = b_j\beta + y - \delta_j \\ (\hat{x} - \hat{a})\hat{\lambda}_j = \hat{x}\hat{\theta}_j - \hat{a} + \delta_j^* \\ \hat{y}\hat{\theta}_j = b_j\hat{\beta} + \hat{y} - \delta_j^* \end{aligned} \right], \quad j = 1, \dots, n \\ f_5: & \begin{bmatrix} \lambda_j\hat{\lambda}_j = 1 \\ \theta_j\hat{\theta}_j = 1 \\ \beta\hat{\beta} = 1 \end{bmatrix}, \quad j = 1, \dots, n \end{aligned}$$

- 4n+1 equations with 5n+8 unknowns
- $n=7 \Rightarrow 43$ quadratic polynomial
- Total degree=2⁴³=8.8x10¹²
- Reduced to 26,880 paths with Bertini
- Total 558 solutions or 279 pairs of cognate slider-crank four-bar linkages

Table 1 Number of solutions to unaugmented and augmented systems, respectively, P(z)=0 and $\hat{P}(z,l)=0$

		<i>P</i> ₁₋₇		<i>P</i> ₁₋₁₅		
Method		No. of paths tracked	No. of solutions	No. of paths tracked	No. of solutions	
BERTINI	Classical	26,880	14,582 ^a	26,880	558	
	Regeneration	14,576 ^a	558	19,036 ^a	558	
HOM4PS2		5632	2348 ^b	5632	558 ^c	

^aThis number slightly changes by $\pm 0.1\%$ depending on the input data.

^bThis number slightly changes by $\pm 1\%$ depending on the input data.

^cThis number slightly changes by -1% depending on the input data.

Kinetostatic Analysis of Compliant Mechanisms

PRBM of a compliant platform mechanism

Objective

 Find equilibrium configurations with given external forces

Inverse Static Analysis Equations

$$l_i^2 = (\mathbf{B}_i - \mathbf{A}_i)^T (\mathbf{B}_i - \mathbf{A}_i), \quad i = 1, 2, 3.$$
Kinematics
$$\frac{\partial V}{\partial x} - F_x = \sum_{i=1}^3 k_i (l_i - l_{0i}) \frac{\partial l_i}{\partial x} - F_x = 0,$$

$$\frac{\partial V}{\partial y} - F_y = \sum_{i=1}^3 k_i (l_i - l_{0i}) \frac{\partial l_i}{\partial y} - F_y = 0,$$
Equilibrium
$$\frac{\partial V}{\partial \theta} - M = \sum_{i=1}^3 k_i (l_i - l_{0i}) \frac{\partial l_i}{\partial \theta} - M = 0,$$

V is the potential energy of the system.

Solutions

- Apply POLSYS_GLP program
- Find all equilibrium positions
- Stability criteria: check definiteness of the Hessian matrix

Finding All Equilibrium Positions of CM

- Zero external forces (unloaded)
- Symmetric base and platform
- POLSYS_GLP tracked 466 solution path

A bi-stable compliant mechanism

A tri-stable compliant mechanism

Kinetostatic Analysis of Spatial Compliant Stewart-Gough Platform

Fig. 1. A schematic view of a general compliant Stewart–Gough platform.

Kinematic constraint equations

$$\begin{array}{ll} \mathbf{0} &= & \hat{\mathbf{g}}^T \hat{q}, \\ \mathbf{0} &= & \hat{q}^T \hat{q} l_0^2 - \hat{\mathbf{g}}^T \hat{g}, \\ \mathbf{0} &= & \begin{bmatrix} \mathbf{B}_j - \mathbf{a}_j \end{bmatrix}^T \begin{bmatrix} \mathbf{B}_j - \mathbf{a}_j \end{bmatrix} - l_j^2, \ \mathbf{j} = 1, \dots, 5 \\ &= 2 \Big(\tilde{\mathbf{g}}^T \mathbf{b}_j - \mathbf{a}_j^T \begin{bmatrix} \mathbf{p} + R \mathbf{b}_j \end{bmatrix} \Big) + \Big(\mathbf{a}_j^T \mathbf{a}_j + \mathbf{b}_j^T \mathbf{b}_j + l_0^2 - l_j^2 \Big) \hat{q}^T \hat{q}, \end{array}$$

Static equilibrium equations

$$\mathbf{F} = \sum_{i=0}^{5} \frac{f_i}{l_i} [\mathbf{B}_i - \mathbf{a}_i] = \frac{f_0}{l_0} \mathbf{p} + \sum_{j=1}^{5} \frac{f_j}{l_j} \left[\mathbf{p} - \mathbf{a}_j + R\mathbf{b}_j \right]$$

$$\mathbf{M} + R\mathbf{b}_{6} \times \mathbf{F} = \sum_{j=1}^{5} \frac{f_{j}}{l_{j}} R\mathbf{b}_{j} \times \left[\mathbf{B}_{j} - \mathbf{a}_{j}\right] = \sum_{j=1}^{5} \frac{f_{j}}{l_{j}} R\mathbf{b}_{j} \times \left[\mathbf{p} - \mathbf{a}_{j}\right]$$
$$= \sum_{j=1}^{5} \frac{f_{j}}{l_{j}} \left[G\mathbf{b}_{j} + \mathbf{a}_{j} \times R\mathbf{b}_{j}\right],$$

Kinetostatic Analysis of Spatial Compliant Stewart-Gough Platform

- 13 polynomials
- Total degree = 5,971,968
- Bertini traced 253,602 paths
- Found 29,272 Solutions

Table 1

Five kinetostatic problems of the compliant Stewart-Gough platform.

Rinetostatics problem type Rinowin parameters Onknowins Solution procedure, solve Eqs. #	
InvInv. $\{\mathbf{l}_0, \mathbf{a}, \mathbf{b}, \hat{q}, \hat{g}, \mathbf{F}, \mathbf{M}\}$ $\{\mathbf{l}, \mathbf{k}\}$ (i) 14 (ii) 15, 161InvFwd. $\{\mathbf{l}_0, \mathbf{a}, \mathbf{b}, \hat{q}, \hat{g}, \mathbf{k}\}$ $\{\mathbf{l}, \mathbf{F}, \mathbf{M}\}$ (i) 14 (ii) 15 (iii) 161FwdInv. $\{\mathbf{l}_0, \mathbf{l}, \mathbf{a}, \mathbf{b}, \mathbf{F}, \mathbf{M}\}$ $\{\hat{q}, \hat{g}, \mathbf{k}\}$ (i) 14 (ii) 15, 1640FwdFwd. $\{\mathbf{l}_0, \mathbf{l}, \mathbf{a}, \mathbf{b}, \mathbf{k}\}$ $\{\hat{q}, \hat{g}, \mathbf{F}, \mathbf{M}\}$ (i) 14 (ii) 15, 1640FwdFwd. $\{\mathbf{l}_0, \mathbf{l}, \mathbf{a}, \mathbf{b}, \mathbf{k}\}$ $\{\hat{q}, \hat{g}, \mathbf{F}, \mathbf{M}\}$ (i) 14 (ii) 15 (iii) 1640	0

Tari, Su and Hauenstein, Mechanism and Machine Theory, 2012

Synthesis of Compliant Mechanisms

PRBM of a compliant 4-bar

Objective

 Find the dimensions and spring parameters for a given set of equilibrium positions

Synthesis Equations

Write kinematics equations and equilibrium equations for each design position

$$\begin{split} \mathbf{W}_{1}^{j} - \mathbf{G}_{1} &- [R(\Delta \alpha^{j} - \Delta \phi_{1}^{j})](\mathbf{W}_{1}^{0} - \mathbf{G}_{1}) = 0, \quad j = 1, 2, \\ \mathbf{W}_{2}^{j} - \mathbf{G}_{2} &- [R(\Delta \alpha^{j} - \Delta \phi_{2}^{j})](\mathbf{W}_{2}^{0} - \mathbf{G}_{2}) = 0, \quad j = 1, 2, \\ (\mathbf{W}_{1}^{j} - \mathbf{W}_{2}^{j})\mathbf{v}_{1}^{j} - (\mathbf{W}_{1}^{j} - \mathbf{G}_{1}) + (\mathbf{W}_{2}^{j} - \mathbf{G}_{2})\mathbf{v}_{2}^{j} = 0, \quad j = 1, 2, \end{split}$$

Kinematics

 $k_1 \Delta \phi_1^j (\mathbf{v}_1^j - 1) + k_2 \Delta \phi_2^j (\mathbf{v}_1^j - \mathbf{v}_2^j) = 0, j = 1, 2,$

Solutions

- Transform equations into polynomial form
- Solved by POLSYS_GLP program
- Find all candidate designs

- POLSYS_GLP tracked 196 solution path
- Found 8 real solutions

Kinetostatic Synthesis of Compliant 4-Bar

Fig. 2. A schematic view of a pseudo-rigid-body four-bar and its displaced configuration with the vector definitions.

• Kinematic constraint equations

• Static equilibrium equations

$$\begin{split} f_{1} : \mathbf{a} \Big(e^{i\lambda_{j}} - 1 \Big) - \mathbf{x} \Big(e^{i\theta_{j}} - 1 \Big) &= \mathbf{d}_{j} \\ f_{2} : \mathbf{b} \Big(e^{i\mu_{j}} - 1 \Big) - \mathbf{y} \Big(e^{i\theta_{j}} - 1 \Big) &= \mathbf{d}_{j} \\ f_{3} : \mathbf{a} \Big(e^{-i\lambda_{j}} - 1 \Big) - \mathbf{\hat{x}} \Big(e^{-i\omega_{j}} - 1 \Big) &= \mathbf{d}_{j} \\ f_{4} : \mathbf{\hat{b}} \Big(e^{-i\mu_{j}} - 1 \Big) - \mathbf{\hat{y}} \Big(e^{-i\theta_{j}} - 1 \Big) &= \mathbf{d}_{j} \\ f_{4} : \mathbf{\hat{b}} \Big(e^{-i\mu_{j}} - 1 \Big) - \mathbf{\hat{y}} \Big(e^{-i\theta_{j}} - 1 \Big) &= \mathbf{d}_{j} \\ f_{4} : \mathbf{\hat{b}} \Big(e^{-i\mu_{j}} - 1 \Big) - \mathbf{\hat{y}} \Big(e^{-i\theta_{j}} - 1 \Big) &= \mathbf{d}_{j} \\ f_{4} : \mathbf{\hat{b}} \Big(e^{-i\mu_{j}} - 1 \Big) - \mathbf{\hat{y}} \Big(e^{-i\theta_{j}} - 1 \Big) = \mathbf{\hat{d}}_{j} \end{split}$$

Enumeration of Kinetostatic Problems

Function Generation

All combinations of free choices for general compliant function generation problems.

Case	п	# of eqs. (3n)	$m_1 \leq 6-n$	$k \leq 4$	# of sols. $O(\infty^{10-2n})$
1	5	15	0	0	Finite
2	4	12	0	2	O(∞ ²)
3	4	12	1	1	O(∞ ²)
4 ^a	4	12	2	0	<i>O</i> (∞ ²)
5	3	9	0	4	$O(\infty^4)$
6	3	9	1	3	$O(\infty^4)$
7	3	9	2	2	$O(\infty^4)$
8 ^a	3	9	3	1	$O(\infty^4)$
9	2	6	2	4	O(∞ ⁶)
10	2	6	3	3	<i>O</i> (∞ ⁶)
11 ^a	2	6	4	2	O(∞ ⁶)
12 ^a	1	3	4	4	$O(\infty^8)$

^a Cases with decoupled kinematic and static equations.

Path Generation

Table 1

Table 3

All combinations of

Motion Generation

Table 2

ree	choices	for	general	com	pliant	path	generation	problems.	

neral	compliant	motion	generation	problems.
-------	-----------	--------	------------	-----------

Case	n	# of eqs.	$m_4 \le 8 - n$	$k \leq 4$	# of sols.	# of eqs.	$m_2 \leq 4 - n$	$m_3 \leq 4-n$	$k \leq 4$	# of sols.
		(5 <i>n</i>)			$O(\infty^{12-2n})$	(3n)				O(∞ ¹²⁻³ⁿ)
27	6	30	0	0	Finite	12	0	0	0	Finite
28	5	25	0	2	$O(\infty^2)$	12	0	0	0	Timee
29	5	25	1	1	$O(\infty^2)$	9	0	0	3	O(∞ ³)
30	5	25	2	0	O(∞ ²)	9	0	1	2	O(∞ ³)
31	4	20	0	4	O(∞ ⁴)	9	1	0	2	$O(\infty^3)$
32	4	20	1	3	<i>O</i> (∞ ⁴)	0	1	1	1	$O(m^3)$
33	4	20	2	2	O(∞ ⁴)	3	1	1	1	0(~)
34	4	20	3	1	<i>O</i> (∞ ⁴)	6	0	2	4	<i>O</i> (∞ ⁶)
35 ^a	4	20	4	0	O(∞ ⁴)	6	1	1	4	O(∞ ⁶)
36	3	15	2	4	O(∞ ⁶)	6	1	2	3	O(∞ ⁶)
37	3	15	3	3	<i>O</i> (∞ ⁶)	C	2	0	4	0(-6)
38	3	15	4	2	O(∞ ⁶)	0	2	0	4	0()
39 ^a	3	15	5	1	O(∞ ⁶)	6	2	1	3	$O(\infty^{\circ})$
40	2	10	4	4	O(∞ ⁸)	6	2	2	2	O(∞ ⁶)
41	2	10	5	3	O(∞ ⁸)	3	2	3	4	$O(\infty^9)$
42 ^a	2	10	6	2	O(∞ ⁸)	2	2	2		0(9)
43	1	5	6	4	$O(\infty^{10})$	2	2	2	4	U(@~)
44 ^a	1	5	7	3	O(∞ ¹⁰)	3	3	3	3	<i>O</i> (∞ ⁹)

^a Cases with decoupled kinematic and static equations.

nd static equations.

Tari and Su, Mechanism and Machine Theory, 2011

DNA Origami Nanorobots (Overview)

Background

Emerging DNA origami nanotechnology
Engineering complex molecular structures via self-assembling
Current research mostly focuses on static structures
Need for a systematic design approach for dynamic structures

<u>Approach</u>

Apply kinematic principle and theories from macroscopic engineering
Design of various kinematic joints
Computer-aided design/engineering

Design, Fabrication and Actuation of DNA Origami Nanomechanisms

Examples: Bennett 4-bar, slider-crank, compliant bistable 4-bar
Design tools: projection kinematic analysis, design automation

Applications

Drug deliveryPrecision medicineSensors for diagnose

Nanotechnology for Precision Medicine

Engineering Molecular Machines

• Why nanomachines and nanorobots?

- Needs: transportation, mechanical work
- Programmable: prescribed motion
- Controllable motion: reversible, responsive to actuation signal
- Artificial Molecular Machines (2016 Nobel Prize in Chemistry

The Inner Life of the Cell (Youtube)

Artificial molecular machines, (V. Balzani, A. Credi, F. M. Raymo, and J. F. Stoddart), Angew. Chem. Int. Ed. 2000, 39, 3348-3391.

Research Goal

 Apply mechanical engineering design principles to engineer/make molecular machines which could operate or re-order matter at a molecular or atomic scale in a controllable, programmable and pre-defined way.

Su and Castro, The rise of DNA nanorobots, ASME Magazine, 2016

DNA Structures and Base Pairing

A long chain of four nucleotide acids

- adenine (A), thymine (T), (C) and guanine (G)
- Single stranded DNA polymer (ssDNA)
- Base pairing
 - A-T, C-G base paring
- Self-assembling into double stranded helix structure (dsDNA)

DNA Origami Nanotechnology

• DNA Nanotechnology

- Design of complex structures using DNA materials
- Fabrication via DNA selfassembling, i.e. A-T, C-G base paring

DNA origami nanotechnology for assembling complex structures

Rothemund, Nature, 2006

Dynamic Structures Made by DNA Origami Nanotechnology

- Current designs are mostly static shapes
- Very few dynamic structures with controllable, programmable motions
- Our approach:
 - Apply engineering principles to guide the design process
 - Apply kinematic and machine theory to design molecular machines for a prescribed motion
 - Actuate these molecular machines using staple displacement method or changing experimental settings.

Logic-gated nanorobot for drug delivery

DNA origami forms a hexagonal barrell split in half

Complementary clamps close the barrell

Binding sites inside the barrel can be loaded with cargo conjugated to ssDNA

Douglas et al., Science 2012

Kinematic Mechanisms and Machines

- (Kinematic) mechanisms are mechanical skeleton of machines and robots
- Mechanisms are comprised of multiple links connected by kinematic joints
- Mechanisms have a prescribed motion defined by connectivity of links and joints
- Their motion can be controlled via actuators

Kinematic Joints/Pairs

- Kinematic joints constrains motion of two connected parts
- Kinematic pairs: lower pairs, gear pairs, cams

Design Process of Macroscopic Kinematic Mechanisms

- Number synthesis determines
 - Number of links and joints
 - Joint types: R/P/C/S/U
 - Mobility (degree-of-freedom) of the final mechanism

Type synthesis determines

- How links and joined are connected. Single or multi loop
- The motion characteristics of the final mechanism

Dimensional synthesis determines

The critical kinematic parameters, e.g. link lengths, twist angles, location of joints

Embodiment design determines

The dimensions of link shape

Design Process of DNA Origami Mechanisms

Design Process of DNA Links

- Links are designed by bundles of double stranded DNA helices (dsDNA)
- Blueprint of scaffold design
- Staple sequence design

Design of DNA Origami Links

 Use different length cylinders to approximate the desired shape

Link Design with cadnano

cadnano GUI

Design of Various DNA Joints

- Kinematic joints are made of single stranded DNA
- Compliant joints are made of dsDNA with a small bending stiffness

Design of DNA Origami Joints

• Hinge design with ssDNA

Experimental Results

Castro, C. E.; Su, H.-J.; Marras, A. E.; Zhou, L.; Johnson, J. Nanoscale 2015.

Marras, A. E.; Zhou, L.; Su, H.-J.; Castro, C. E. Proc. Natl. Acad. Sci. 2015, 112, 713–718.

Computer-Aided Design and Engineering

Design and CanDo simulation of Stewart Platform Linkage

Origami of DNA Origami

Design of DNA Origami Waterbomb

Yuri Shumakov, (video by Jo Nakashima)

Satellite concept design, Prof. Larry Howell BYU

• Waterbomb base

(https://bryantyee.wordpress.com/tag/waterbomb-base/)

Design of Thick Origami Waterbomb

Joint i	α _{<i>i</i>-1}	<i>a</i> _{<i>i</i>-1}	d_i	θ_i	$[R_i]$	r _{<i>i</i>-1}	\$ _i
1	π/4	0	0	θ_1	$R_X(\pi / 4)R_Z(\theta_1)$	(0,0,0)	$\boldsymbol{\$}_1 = [\boldsymbol{A}\boldsymbol{d}]_1 \boldsymbol{\$}_0$
2	-3π/4	t	0	θ_2	$R_{X}(-3\pi/4)R_{Z}(\theta_{2})$	(<i>t</i> ,0,0)	$\$_2 = [Ad]_1 [Ad]_2 \$_0$
3	-3π/4	- <i>t</i>	0	θ_3	$R_{X}(-3\pi/4)R_{Z}(\theta_{3})$	(-t,0,0)	$S_3 = [Ad]_1 [Ad]_2 [Ad]_3 S_0$
6	<i>-π</i> /4	0	0	θ_6	$R_{X}(-\pi / 4)R_{Z}(\theta_{6})$	(0,0,0)	$S_6 = [Ad]_6 [Ad]_5 [Ad]_4 S_0$
5	3π/4	t	0	θ_5	$R_{X}(3\pi/4)R_{Z}(\theta_{5})$	(<i>t</i> ,0,0)	$S_5 = [Ad]_6 [Ad]_5 S_0$
4	3π/4	- <i>t</i>	0	θ_4	$R_X(3\pi/4)R_Z(\theta_4)$	(-t,0,0)	$\$_4 = [Ad]_6 \$_0$

 $-1 + \cos\theta_1^2 + \cos\theta_2 - \cos\theta_1^2 \cos\theta_2 + 2\cos\theta_2 \sin\theta_1^2 - 2\sqrt{2}\cos\theta_1 \sin\theta_1 \sin\theta_2 = 0$

Different Configurations

A. Single paper origami; B. thick panel origami; C. cylinder model.

Experimental Data and Analysis

Polymerization of Multiple Units

Movie

Configuration Analysis of DNA Origami Mechanisms via Projection Kinematics

Zhou et al., Mechanism and Machine Theory, 2017 Zhou, Ph.D. Disseration, Ohio State University, 2017

Motivations of Projection Kinematics

- Configuration analysis: evaluate how well the prototype samples meet the original design goals
- Challenges for DOM: samples with mobility (every sample has a different configuration, only projected parameters are measurable.

Reconstruction of 3D Objects

- In computer vision, reconstruction of 3D Objects from 2D images is limited to static (no mobility) objects and requires multiple images from different view angles.

Configuration Analysis of DOM

- Evaluate how well the prototype samples meet the original design goals
- Measure key kinematic parameters and compare against kinematic constraint equations

$$(\mathbf{D} - \mathbf{C}) \cdot (\mathbf{D} - \mathbf{C}) - l^2 = 0$$
 $\beta' = \beta$, $\alpha' = \cos^{-1}\left(\frac{\mathbf{D}' \cdot \mathbf{B}}{l^2}\right)$

Kinematics of The Bennett Linkage

Projection Kinematics

$$\beta' = \beta, \quad \alpha' = \cos^{-1}\left(\frac{\mathbf{D}' \cdot \mathbf{B}}{l^2}\right)$$

Projection Kinematic Analysis of Waterbomb Base

 $-1 + \cos\theta_1^2 + \cos\theta_2 - \cos\theta_1^2 \cos\theta_2 + 2\cos\theta_2 \sin\theta_1^2 - 2\sqrt{2}\cos\theta_1 \sin\theta_1 \sin\theta_2 = 0$

Projection from 3D to a 2D Plane

$$\overline{\mathbf{v}} = \mathbf{v} - (\mathbf{v} \cdot \mathbf{n})\mathbf{n} = [p]\mathbf{v}$$

v: Arbitrary vector;
v: Projection vector;
n: Projection direction.

$$\mathbf{n} = \{0, 0, 1\} \ [p] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Projection of 3D Objects

- Relationship between the projection configuration and the true configuration in 3D space can be obtained from the kinematics analysis and transformations.

$$[R] = [Y(\beta)][X(\alpha)] = \begin{bmatrix} \cos \beta & \sin \alpha \sin \beta & \cos \alpha \sin \beta \\ 0 & \cos \alpha & -\sin \alpha \\ -\sin \beta & \sin \alpha \cos \beta & \cos \alpha \cos \beta \end{bmatrix}$$

Projection of Kinematic Pairs

Fig. 1. Kinematic parameters of revolute, prismatic, cylindrical and spherical joints (from left to right) are 3D (top) in nature. They are projected to a *x*-*y* plane (bottom).

Projection Kinematics of R-Joint

Projection Kinematic Equations

$$\begin{aligned} & \left[L_1 \cos \beta = \overline{L}_1 \\ & L_2 (\cos \theta_{01} \cos \beta + \sin \theta_{01} \sin \alpha \sin \beta) = \overline{L}_2 \cos \overline{\theta}_1 \\ & L_2 \sin \theta_{01} \cos \alpha = \overline{L}_2 \sin \overline{\theta}_1 \end{aligned} \right]$$

$$\begin{aligned} &(\theta_{01}, \alpha, \beta), \\ &(\theta_{01}, -\alpha, -\beta), \\ &(-\theta_{01}, \pi - \alpha, \beta), \\ &(-\theta_{01}, \alpha - \pi, \beta) \end{aligned}$$

Points in the local reference	Points af	fter	Projected	Measured points from a 2D
frame	rotation		points	image
$\mathbf{A}_0 = (L_1, 0, 0)^T$	$\mathbf{A} = [R]\mathbf{A}_0$		$\overline{\mathbf{A}} = [P]\mathbf{A}$	$\overline{\mathbf{A}} = (\overline{L}_1, 0, 0)^T$
$\mathbf{B}_0 = (L_2 \cos \theta_{01}, L_2 \sin \theta_{01}, 0)^T$	$\mathbf{B} = [R]\mathbf{B}_0$		$\overline{\mathbf{B}} = [P]\mathbf{B}$	$\overline{\mathbf{B}} = (\overline{L}_2 \cos \overline{\theta}_1, \overline{L}_2 \sin \overline{\theta}_1, 0)^T$

Numerical Example

Eight possible configurations

Initial configuration	$L_1 = 100, L_2 = 150, \theta_{01} = 120^{\circ}$
Rotation angles	$\alpha = -30^\circ, \beta = 60^\circ$
Projected configuration	$\overline{L}_1 = 50, \ \overline{L}_2 = 195.256, \ \overline{\theta}_1 = 129.809^{\circ}$

Symmetric Configurations

Symmetrical (mirrored) configurations distinguished by a designed feature (red box on the purple link). (a) Positive and negative revolute joint angles. (b) Symmetrical configurations of planer four-bar linkage.

Projection Kinematics of P/C-Joints

Prismatic Joints (two configurations)

Projection kinematic equations

$$\begin{cases} L_1 \cos \beta = \overline{L}_1 \\ (L_1 + L_2) \cos \beta = \overline{L}_1 + \overline{L}_2 \end{cases}$$

Numerical example

Initial configuration	L_1 =100, L_2 =150
Rotation angles	$\alpha = -30^\circ, \beta = 60^\circ$
Projected configuration	$\overline{L}_1 = 50, \ \overline{L}_2 = 75$

Cylindrical Joints (same as prismatic joints)

Projection Kinematics of S-Joints

Projection kinematic equations

Treat $\alpha + \phi_0$ as one variable

$$L_{2}(\cos\theta_{01}\cos\beta + \sin\theta_{01}\cos(\alpha + \phi_{0})\sin\beta) = \overline{L}_{2}\cos\overline{\theta}_{1}$$
$$L_{2}\sin\theta_{01}\sin(\alpha + \phi_{0}) = \overline{L}_{2}\sin\overline{\theta}_{1}$$

Points in the local reference frame	Points after rotation	Projected points	Measured points from a 2D image
$\mathbf{A}_0 = (L_1, 0, 0)^T$	$\mathbf{A} = [R]\mathbf{A}_0$	$\overline{\mathbf{A}} = [P]\mathbf{A}$	$\overline{\mathbf{A}} = (\overline{L}_1, 0, 0)^T$
$\mathbf{B}_0 = [X(\phi_0)]\mathbf{B}_{00}$	$\mathbf{B} = [R]\mathbf{B}_0$ = [Y(\beta)][X(\alpha + \phi_0)]\mathbf{B}_{00}	$\overline{\mathbf{B}} = [P]\mathbf{B}$	$\overline{\mathbf{B}} = (\overline{L}_2 \cos \overline{\theta}_1, \overline{L}_2 \sin \overline{\theta}_1, 0)^T$

Here $\mathbf{B}_{00} = (L_2 \cos \theta_{01}, L_2 \sin \theta_{01}, 0)^T$.

 $\int L_1 \cos \beta = \overline{L}_1$

Numerical Example

Eight possible configurations

Initial configuration	$L_1=100, L_2=150; \theta_{01}=100^\circ, \phi_0=15^\circ$	
Rotation angles	$\alpha = -30^{\circ}, \beta = 30^{\circ}$	
Projected configuration	$\overline{L}_1 = 86.60, \ \overline{L}_2 = 148.65, \ \overline{\theta}_1 = 106.28^{\circ}$	

 $(10^{\circ}, 30^{\circ}, -15^{\circ})$

 $\theta_{01},\beta,\alpha+\phi_0$

(107.91°, -30°, 1.38°)

(-107.91°, 30°, 178.62°)

(-107.91°, -30°, -178.62°)

Projection Kinematics of Planar 4-Bar

Projection kinematic equations

$$L_{1} \cos \beta = \overline{L}_{1}$$

$$L_{1} \cos \beta - L_{2} \cos \beta \cos \theta_{02} + L_{2} \sin \alpha \sin \beta \sin \theta_{02} = \overline{L}_{1} + \overline{L}_{2} \cos(\pi - \overline{\theta}_{2})$$

$$L_{2} \cos \alpha \sin \theta_{02} = \overline{L}_{2} \sin(\pi - \overline{\theta}_{2})$$

$$L_{4} \cos \beta \cos \theta_{01} + L_{4} \sin \alpha \sin \beta \sin \theta_{01} = \overline{L}_{4} \cos \overline{\theta}_{1}$$

$$L_{4} \cos \alpha \sin \theta_{01} = \overline{L}_{4} \sin \overline{\theta}_{1}$$
(10)
$$L_{4} \cos \alpha \sin \theta_{01} = \overline{L}_{4} \sin \overline{\theta}_{1}$$
(11)

Projection Kinematics of Planar 4-Bar

Projection kinematic equations

$$L_{1} \cos \beta = \overline{L}_{1}$$

$$L_{1} \cos \beta - L_{2} \cos \beta \cos \theta_{02} + L_{2} \sin \alpha \sin \beta \sin \theta_{02} = \overline{L}_{1} + \overline{L}_{2} \cos(\pi - \overline{\theta}_{2})$$

$$L_{2} \cos \alpha \sin \theta_{02} = \overline{L}_{2} \sin(\pi - \overline{\theta}_{2})$$

$$L_{4} \cos \beta \cos \theta_{01} + L_{4} \sin \alpha \sin \beta \sin \theta_{01} = \overline{L}_{4} \cos \overline{\theta}_{1}$$

$$L_{4} \cos \alpha \sin \theta_{01} = \overline{L}_{4} \sin \overline{\theta}_{1}$$
(10)
$$L_{4} \cos \alpha \sin \theta_{01} = \overline{L}_{4} \sin \overline{\theta}_{1}$$
(11)

Vector Loop Closure Equation

$$L_1^2 + L_2^2 + L_4^2 - L_3^2 - 2L_1L_4\cos\theta_{01} - 2L_1L_2\cos\theta_{02} + 2L_2L_4\cos(\theta_{01} + \theta_{02}) = 0$$
(12)

Measurement Cases of 4-bar

Projection kinematic equations

Table 5.7: Equations and solutions of four kinds of projection kinematic analysis for the four-bar linkage

Case	Measured geometric	Measured parameters	Representative	#	of
	parameters		Equations	solutions	
1	Two links and the	$\overline{L}_1, \overline{L}_4, \overline{\theta}_1$	(7, 10, 11, 12)	2	
	joint between them				
2	Two adjacent joints	$\overline{\theta_1}, \overline{L_1}, \overline{\theta_2}$	(7, 12, 15, 16)	4	
	and the link between				
	them				
3	Three joints	$\overline{\theta_1}, \ \overline{\theta_2}, \ \overline{\theta_3}$	(12, 20, 21, 22)	4	
4	Three links	$\overline{L}_1, \ \overline{L}_2, \ \overline{L}_4$	(7, 12, 24, 25)	8	

Numerical Examples of Possible Configurations of Planar 4-Bar

Initial configuration	$L_1=5, L_2=5, L_3=6, L_4=3, \theta_{01}=60^\circ, \theta_{02}=116.011^\circ; \alpha = 15^\circ, \beta=45^\circ$
Projected configuration	$\overline{L_1}=3.54, \overline{L_2}=4.95, \overline{L_3}=4.74, \overline{L_4}=2.94; \overline{\theta_1}=58.53^\circ, \overline{\theta_2}=118.67^\circ, \overline{\theta_3}=38.61^\circ;$

Table 5.7: Equations and solutions of four kinds of projection kinematic analysis for the four-bar linkage

Case	Measured geometric	Measured parameters	Representative	#	of
	parameters		Equations	solutions	
1	Two links and the	$\overline{L}_1, \overline{L}_4, \overline{\theta}_1$	(7, 10, 11, 12)	2	
	joint between them				
2	Two adjacent joints	$\overline{\theta}_1, \overline{L}_1, \overline{\theta}_2$	(7, 12, 15, 16)	4	
	and the link between	A * A * 2			
	them				
3	Three joints	$\overline{\theta}_1, \ \overline{\theta}_2, \ \overline{\theta}_3$	(12, 20, 21, 22)	4	
4	Three links	\overline{L}_1 , \overline{L}_2 , \overline{L}_4	(7, 12, 24, 25)	8	

Projection Kinematics of Planar Five-Bar Mechanisms

 $\int L_1 \cos \beta = \overline{L}_1$

Projection Kinematic Equations

$$\begin{aligned} &|L_{1} \cos \beta - L_{2} \cos \beta \cos \theta_{02} + L_{2} \sin \alpha \sin \beta \sin \theta_{02} = \overline{L}_{1} + \overline{L}_{2} \cos(\pi - \overline{\theta}_{2}) \\ &L_{2} \cos \alpha \sin \theta_{02} = \overline{L}_{2} \sin(\pi - \overline{\theta}_{2}) \\ &L_{1} \cos \beta - L_{2} \cos \beta \cos \theta_{02} + L_{3} \cos \beta \cos(\theta_{02} + \theta_{03}) + L_{2} \sin \alpha \sin \beta \sin \theta_{02} - L_{3} \sin \alpha \sin \beta \sin(\theta_{02} + \theta_{03}) \\ &= \overline{L}_{1} + \overline{L}_{2} \cos(\pi - \overline{\theta}_{2}) + \overline{L}_{3} \cos(\overline{\theta}_{2} + \overline{\theta}_{3}), \\ &L_{2} \cos \alpha \sin \theta_{02} - L_{3} \cos \alpha \sin(\theta_{02} + \theta_{03}) = \overline{L}_{2} \sin(\pi - \overline{\theta}_{2}) + \overline{L}_{3} \sin(-(\overline{\theta}_{2} + \overline{\theta}_{3})) \\ &L_{5} \cos \beta \cos \theta_{01} + L_{5} \sin \alpha \sin \beta \sin \theta_{01} = \overline{L}_{5} \cos \overline{\theta}_{1} \\ &L_{5} \cos \alpha \sin \theta_{01} = \overline{L}_{5} \sin \overline{\theta}_{1} \end{aligned}$$

$$\begin{cases} \overline{L}_{1} - \overline{L}_{2} \cos \overline{\theta}_{2} + \overline{L}_{3} \cos(\overline{\theta}_{2} + \overline{\theta}_{3}) - \overline{L}_{5} \cos \overline{\theta}_{1} + \overline{L}_{4} \cos(\overline{\theta}_{1} + \overline{\theta}_{5}) = 0 \\ &\overline{L}_{2} \sin \overline{\theta}_{2} - \overline{L}_{3} \sin(\overline{\theta}_{2} + \overline{\theta}_{3}) - \overline{L}_{5} \sin \overline{\theta}_{1} + \overline{L}_{4} \sin(\overline{\theta}_{1} + \overline{\theta}_{5}) = 0 \end{cases}$$

$$|\mathbf{C}_{0} - \mathbf{D}_{0}| - L_{4}^{2} = 0 \qquad \qquad \text{Vector Loop Equation}$$

Numerical Example of Planar Five-Bar Mechanisms

Initial configuration	$L_1=2, L_2=5/3, L_3=2, L_4=7/3, \theta_{01}=120^\circ, \theta_{02}=110^\circ, \theta_{03}=110.119^\circ; \alpha=15^\circ, \beta=45^\circ$
Projected configuration	$\overline{L_1} = 1.414, \ \overline{L_2} = 1.663, \ \overline{L_3} = 1.505, \ \overline{L_4} = 1.945, \ \overline{L_5} = 1.804; \ \overline{\theta_1} = 103.126^\circ, \\ \overline{\theta_2} = 114.509^\circ, \ \overline{\theta_3} = 121.303^{\circ\circ}, \ \overline{\theta_4} = 93.22^\circ, \ \overline{\theta_5} = 107.842^\circ; \\ \end{array}$

Points in the local reference frame	Points After	Projecte	Measured points from a 2D
	Rotation	d points	image
$\mathbf{A}_0 = (L_1, 0, 0)^T$	$\mathbf{A} = [R]\mathbf{A}_0$	$\overline{\mathbf{A}} = [P]\mathbf{A}$	$\overline{\mathbf{A}} = (\overline{L}_1, 0, 0)^T$
${\bf B}_0 = {\bf A}_0 +$	$\mathbf{B} = [R]\mathbf{B}_0$	$\overline{\mathbf{B}} = [P]\mathbf{B}$	$\overline{\mathbf{B}} = \overline{\mathbf{A}} +$
$L_2(\cos(\pi - \theta_{02}), \sin(\pi - \theta_{02}), 0)^T$			$(\overline{L}_2\cos(\pi-\overline{\theta}_2),\overline{L}_2\sin(\pi-\overline{\theta}_2),0)$
$C_0 = B_0 +$	$\mathbf{C} = [R]\mathbf{C}_0$	$\overline{\mathbf{C}} = [P]\mathbf{C}$	$\overline{\mathbf{C}} = \overline{\mathbf{B}} +$
$(L_3\cos(\theta_{02}+\theta_{03}), L_3\sin(-(\theta_{02}+\theta_{03}))),$			$(\overline{L}_3\cos(\overline{\theta}_2+\overline{\theta}_3),\overline{L}_3\sin(-(\overline{\theta}_2+\overline{\theta}_3))$
$\mathbf{D}_0 = (L_5 \cos \theta_{01}, L_5 \sin \theta_{01}, 0)^T$	$\mathbf{D} = [R]\mathbf{D}_0$	$\overline{\mathbf{D}} = [P]\mathbf{D}$	$\overline{\mathbf{D}} = (\overline{L}_5 \cos \overline{\theta}_1, \overline{L}_5 \sin \overline{\theta}_1, 0)^T$

(-120°, -110°, -110.119°, -165°, 45°) (-120°, -110°, -110.119°, 165°, 45°) (-120°, -110°, -110.119°, 15°, 135°) (-120°, -110°, 110.119°, -15°, -135°)

Eight configurations with 5 measurement angles and five measured link length

DNA Origami Universal Joints

• Universal Joints

Table 5.12: Initial, rotated, projected and measured points that define the structure of quasi universal joint

True configuration	Points after rotation	Projected	Measured points from a 2D
points		points	image
$\mathbf{A}_0 = (L_1, 0, 0)^T$	$\mathbf{A} = [R]\mathbf{A}_0$	$\overline{\mathbf{A}} = [P]\mathbf{A}$	$\overline{\mathbf{A}} = (\overline{L}_1, 0, 0)^T$
$\mathbf{B}_0 = (-L_2 \cos \varphi, -L_2 \sin \varphi, 0)^T$	$\mathbf{B} = [R][Y(\theta_{01})]\mathbf{B}_0$	$\overline{\mathbf{B}} = [P]\mathbf{B}$	$\overline{\mathbf{B}} = (\overline{L}_2 \cos(-\overline{\theta}_1), \overline{L}_2 \sin(-\overline{\theta}_1), 0)^T$
$\mathbf{C}_0 = (-L_3, 0, \Delta h)^T$	$\mathbf{C} = [R][Y(\theta_{01})][Z(\theta_{02})]\mathbf{C}_0$	$\overline{\mathbf{C}} = [P]\mathbf{C}$	$\overline{\mathbf{C}} = (\overline{L}_3 \cos(-\overline{\theta}_1 - \overline{\theta}_2), \overline{L}_3 \sin(-\overline{\theta}_1 - \overline{\theta}_2), 0)^T$

Note: Δh is the design variable that is shown in Figure 5.12.

DNA Origami Universal Joints

Projection kinematic equations

$$\begin{aligned} & \left[L_1 \cos \beta = \overline{L}_1 \\ & L_2 (-\cos \beta \cos \theta_{01} \cos \varphi + \cos \alpha \sin \beta \sin \theta_{01} \cos \varphi - \sin \alpha \sin \beta \sin \varphi) = \overline{L}_2 \cos \overline{\theta}_1 \\ & L_2 (\sin \alpha \sin \theta_{01} \cos \varphi + \cos \alpha \sin \varphi) = \overline{L}_2 \sin \overline{\theta}_1 \\ & L_3 (-\cos \beta \cos \theta_{01} \cos \theta_{02} + \cos \alpha \sin \beta \sin \theta_{01} \cos \theta_{02} - \sin \alpha \sin \beta \sin \theta_{02}) = \overline{L}_3 \cos(-\overline{\theta}_1 - \overline{\theta}_2) \\ & L_3 (-\sin \alpha \sin \theta_{01} \cos \theta_{02} - \cos \alpha \sin \theta_{02}) = \overline{L}_3 \sin(-\overline{\theta}_1 - \overline{\theta}_2) \end{aligned}$$

Unknowns

 α , β , θ_{01} and θ_{02}

Measurements

$$\overline{\theta}_1, \ \overline{\theta}_2, \ \overline{L}_1, \ \text{and} \ \overline{L}_2$$

Pick four equations to solve four uknowns. Use extra measurement data to pick the true solutions

DNA Origami Bennett Mechanisms

Table 5.14: Initial, rotated, projected and measured points that define the structure of X DNA origami Bennett linkage

-	Points in the local reference frame	Points after rotation	Projected points	Measured points
	$\mathbf{A}_0 = (L, 0, 0)^T$	$\mathbf{A} = [R]\mathbf{A}_0$	$\overline{\mathbf{A}} = [P]\mathbf{A}$ $= (A_x, 0, 0)^T$	$\overline{\mathbf{A}} = (\overline{L}_1, 0, 0)^T$
	$\mathbf{B}_{0} = \mathbf{A}_{0} + \left[e^{\theta_{02}\mathbf{S}_{2}}\right] \begin{cases} -L\\ 0\\ 0 \end{cases}$	$\mathbf{B} = [R]\mathbf{B}_0$	$\overline{\mathbf{B}} = [P]\mathbf{B}$ $= (B_x, B_y, 0)^T$	$\overline{\mathbf{B}} = \overline{\mathbf{A}} + (-\overline{L}_2 \cos(\overline{\theta}_2), \overline{L}_2 \sin(\overline{\theta}_2), 0)^T$
х	$\mathbf{C}_{0} = \begin{bmatrix} e^{\theta_{0} \mathbf{s}_{1}} \end{bmatrix} \begin{cases} L \\ 0 \\ 0 \end{bmatrix}$	$\mathbf{C} = [R]\mathbf{C}_0$	$\overline{\mathbf{C}} = [P]\mathbf{C}$ $= (C_x, C_y, 0)^T$	$\overline{\mathbf{C}} = (\overline{L}_4 \cos \overline{\theta}_1, \overline{L}_4 \sin \overline{\theta}_1, 0)^T$

Note: $A_{y}, B_{y}, B_{y}, C_{y}$ and C_{y} are used to represent the coordinates elements because the explicit expressions of them are too complex.

7 projection equations

$$\overline{L}_{1} + \overline{L}_{2}\cos(\pi - \overline{\theta}_{2}) = \overline{L}_{4}\cos\overline{\theta}_{1} + \overline{L}_{3}\cos(\psi_{3})$$

$$\overline{L}_{2}\sin(\pi - \overline{\theta}_{2}) = \overline{L}_{4}\sin\overline{\theta}_{1} + \overline{L}_{3}\sin(\psi_{3}),$$

$$A_{x} = \overline{L}_{1}, \ B_{x} = \overline{L}_{1} + \overline{L}_{2}\cos(\pi - \overline{\theta}_{2}), \ B_{y} = \overline{L}_{2}\sin(\pi - \overline{\theta}_{2}), \ C_{x} = \overline{L}_{4}\cos\overline{\theta}_{1}, \ C_{y} = \overline{L}_{4}\sin\overline{\theta}_{1}$$

1 vector loop equation

$$(\mathbf{B}_0 - \mathbf{C}_0) \bullet (\mathbf{B}_0 - \mathbf{C}_0) - L^2 = \mathbf{0}_2$$

- First eliminate \overline{L}_1 , \overline{L}_2 , \overline{L}_3 and \overline{L}_4 from four equations. They are linear in equations.
- Solve other four unknowns using the other four quations

 $\theta_{01}, \theta_{02}, \alpha \text{ and } \beta$

Sift Out Extraneous Solutions

Use extra measurement data to sift out extraneous solutions

• Rank all possible configurations by errors

Table A3

Measurements, projection kinematics solution and projection results from the model, errors of link lengths between the experiment measurements and projection kinematics analysis of DNA origami Bennett linkage (examples 1, 2, and 3 corresponding to the three examples in Fig. 13 from top to bottom respectively), unit for length: nm.

Example	Measurements	Solutions	Projection results from the model	Average error of the link length $\delta = \left(\sum_{i=1}^{4} \overline{L}_{i} - \overline{L}_{i-P} /\overline{L}_{i}\right)/4\right)$
1	$\begin{split} &\overline{\theta}_1 = 101.05^\circ, \ \overline{\theta}_2 = 52.52^\circ, \\ &\overline{\theta}_3 = 110.19^\circ, \ \overline{L}_1 = 31.64, \ \overline{L}_2 = 31.20, \\ &\overline{L}_3 = 16.93, \ \overline{L}_4 = 19.71 \end{split}$	θ_{01} =155.85°, θ_{02} =67.25°, α =-2.33°, β =22.24°	$ \begin{array}{l} \overline{\theta}_{1-P} = 101.05^{\circ}, \ \overline{\theta}_{2-P} = 52.52^{\circ}, \\ \overline{\theta}_{3-P} = 110.19^{\circ}, \qquad \overline{L}_{1-P} = 25.73, \\ \overline{L}_{2-P} = 26.50, \ \overline{L}_{3-P} = 17.55, \ \overline{L}_{4-P} = 14.58, \end{array} $	15.9%
2	$\begin{split} & \overline{\theta}_1 = 113.25^\circ, \ \overline{\theta}_2 = 55.48^\circ, \\ & \overline{\theta}_3 = 109.18^\circ, \ \overline{L}_1 = 35.29, \ \overline{L}_2 = 35.03, \\ & \overline{L}_3 = 24.11, \ \overline{L}_4 = 25.89 \end{split}$	θ_{01} =154.88°, θ_{02} =66.93°, α =-2.47°, β =5.74°	$\begin{split} & \overline{\theta}_{1-P} = 122.20^{\circ}, \ \overline{\theta}_{2-P} = 123.49^{\circ}, \\ & \overline{\theta}_{3-P} = 123.49^{\circ}, \qquad \overline{L}_{1-P} = 27.66, \\ & \overline{L}_{2-P} = 27.48, \ \overline{L}_{3-P} = 18.82, \ \overline{L}_{4-P} = 20.24 \end{split}$	21.7%
3	$ \begin{split} &\overline{\theta}_1 = 99.138^\circ, \ \overline{\theta}_2 = 78.27^\circ, \ \overline{\theta}_3 = \\ &105.027^\circ, \ \ \overline{L}_1 = 25.89, \ \ \overline{L}_2 = 25.07, \\ &\overline{L}_3 = 24.59, \ \overline{L}_4 = 25.67 \end{split} $	θ_{01} =-124.83°, θ_{02} =104.99°, α =32.41°, β =-9.57°	$\begin{split} & \overline{\theta}_{1-P} = 99.138^{\circ}, \ \overline{\theta}_{2-P} = 78.27^{\circ}, \\ & \overline{\theta}_{3-P} = 105.027^{\circ}, \qquad \overline{L}_{1-P} = 27.41, \\ & \overline{L}_{2-P} = 25.38, \ \overline{L}_{3-P} = 25.42, \ \overline{L}_{4-P} = 27.90 \end{split}$	4.8%

Media Reports on DNA Origami Mechanisms

 Article "The Rise of DNA Nanorobots", Su and Castro, ASME Mechanical Engineering Magazine, 08/2016. Selected as one of 15 best nanotechnology feature articles since 2010, The Nanoscale Frontier of ASME, 2016

 Article "Programmable Motion of DNA origami mechanisms". (PNAS) 112, no. 3 (January 20, 2015): 713–18. Selected media reports:

advancing beneficial nanotechnology

The Columbus Dispatch

• Group members:

- Graduate students: Lifeng Zhou, Chao-Min Huang, Alex Marras
- -Undergraduate students: James Hastings, Jeffrey Kohler, Jonathon King, Simon Kalouche, Ben Rhoads

Collaborators:

Prof. Carlos E. CastroDr. Gary Ren

